Site Inspection Idol City Mine Malheur National Forest, Oregon

Prepared for

U.S. Department of Agriculture–Forest Service Malheur National Forest John Day, Oregon 97845

Prepared by

EA Engineering, Science, and Technology, Inc. 12011 Bellevue-Redmond Road, Suite 200 Bellevue, Washington 98005

> December 2003 FINAL Project No. 13890.09

CONTENTS

				<u>Page</u>
LIST	OF	FIGURI	ES, TABLES, AND PLATES	ii
			NYMS	
			MMARY	
1	IN ITT	DODIIC	VELON	1
1.	IINI	KUDUC	CTION	1
2.			RIPTION, OPERATIONAL HISTORY, AND WASTE	
	CHA	ARACTI	ERISTICS	2
	2.1	Descrip	otion and Location	2
	2.2		ional History and Waste Characteristics	
3.	PAT	HWAY	AND ENVIRONMENTAL HAZARD ASSESSMENT	8
	3.1	Ground	lwater	8
				0
		3.1.1	Geology	
		3.1.2	Hydrogeology	
		3.1.3	Targets	
		3.1.4	Groundwater Exposure Pathway Summary	9
	3.2	Surface	e Water	9
		3.2.1	Hydrologic Setting	9
		3.2.2	Targets	
		3.2.3	Aquatic Survey Results	
		3.2.4	Previous Investigations	
		3.2.5	Analytical Results	
		3.2.6	Surface Water Exposure Pathway Summary	
	3.3	Soil		17
		3.3.1	Targets	17
		3 3 2	Previous Investigations	
		3.3.3	Analytical Results	20
		3.3.4	Soil Exposure Pathway Summary	
	3.4	Air		23
		3.4.1	Targets	23
		3.4.2	Air Pathway Summary	
4.	CLIA	MADV	AND CONCLUSIONS	24
	SUN	IMAKI	AND CONCLUSIONS	44

APPENDIX A: DEVIATIONS FROM THE PROJECT PLANS
APPENDIX B: SITE PHOTOGRAPHS
APPENDIX C: GENERAL INFORMATION FORM
APPENDIX D: COPIES OF SUPPORTING INFORMATION
APPENDIX E: AQUATIC AND TERRESTRIAL INVESTIGATION TABLES
APPENDIX F: SOIL SAMPLE LOG
APPENDIX G: LABORATORY ANALYTICAL REPORTS
APPENDIX H: SURVEY INFORMATION AND WASTE PILE VOLUMES

LIST OF FIGURES

<u>Number</u>	<u>Title</u>
1	Site and stream station location map.
2	Site features and sampling locations - northern area.
3	Site features and sampling locations - entire site area.

LIST OF TABLES

<u>Number</u>	<u>Title</u>
1	Surface water analytical results.
2	Pore water analytical results.
3	Sediment analytical results.
4	Soil analytical results.
5	Plant tissue analytical results.

LIST OF PLATES

<u>Number</u>	<u>Title</u>		
1	Site Location with 1- and 4-mile radii.		
2	Site Location and 15-mile downstream reach.		

LIST OF ACRONYMS

ABA Acid Base Accounting AMD Acid Mine Drainage

APA Abbreviated Preliminary Assessment

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

EA Engineering, Science, and Technology, Inc.

EE/CA Engineering Evaluation/Cost Analysis

ER-L Effects Range-Low ER-M Effects Range-Medium

mg/kg Milligrams per kilogram mg/L Milligrams per liter

NOAA National Oceanic and Atmospheric Administration NVCS National Vegetation Classification Standards

NWI National Wetlands Inventory

OAR Oregon Administrative Rules

ODEQ Oregon Department of Environmental Quality
ODFW Oregon Department of Fish and Wildlife

ONHP Oregon Natural Heritage Program

ONHIC Oregon Natural Heritage Information Center

OSC On-Scene Coordinator

PEL Probable Effects Level

PRG Preliminary Remediation Goal

SARA Superfund Amendments and Reauthorization Act

SC Status of Critical
SI Site Inspection
SOC Species of Concern

SPLP Synthetic Precipitation Leaching Procedure

SSL Soil Screening Levels

SV/SU Status of Vulnerable/Undetermined Status

T&E Threatened and Endangered

TAL Target Analyte List
TDL Target Distance Limit
TDS Total Dissolved Solids
TEL Threshold Effects Level
TMS Timed Meander Search
TOC Total Organic Carbon
TSS Total Suspended Solids

USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey

WRD Water Resources Department

EXECUTIVE SUMMARY

A site inspection (SI) was performed at the Idol City Mine site, located in the Malheur National Forest, near Burns, Oregon. The SI was performed to determine if wastes at the site pose an immediate or potential threat to human health and the environment, and to collect information to support a decision regarding the need for further action.

This inactive mine site consists of one open shaft and one collapsed inclined shaft, one open adit with a water discharge, numerous caved adits, shafts and prospects, trenches and cuts to the bedrock surface, numerous piles of waste rock and tailings from both underground and placer mining, numerous ponds and ditches created during mining and exploration activities onsite, old buildings and other structures, and miscellaneous equipment. The site is located in Gold Gulch, along an unnamed intermittent stream that flows northward into Trout Creek, also classified as an intermittent stream in this area. The main working area, including most of the structures, the open shaft, and the inclined shaft, is in the northern portion of the site. Additional features extend for almost a mile south along the gulch.

Tasks performed during the SI included background research and file review, onsite and offsite reconnaissance, and collection and analysis of soil, waste, surface water, pore water, sediment, plant tissue, and benthic macroinvertebrate samples. Field activities were performed during July 2003. Results of the SI indicated the following:

- There is evidence of a release of hazardous substances to soil and surface water at the site.
- A number of metals were detected at levels above available screening criteria in surface water
 and pore water samples collected in the main mining area, as well as in onsite ponds and the adit
 discharge.
- No evidence of acid mine drainage was observed (at the open adit or in surface water); however, waste rock in many of the piles from underground mining had a soil pH in the range of 3-4.
- Many metals were detected at levels above available screening criteria in surface soil and waste
 material at the site; many of these metals also exceeded the criteria in a background soil sample.
 Metals detected in onsite soils at concentrations exceeding both the criteria and background
 included antimony, arsenic, barium, cadmium, chromium, copper, lead, manganese, mercury,
 selenium, silver, thallium, vanadium, and zinc.
- Several federal or state listed Species of Concern or sensitive species were observed at or near the site and could be impacted by site contaminants, including northern red-legged frog, Oregon spotted frog, pileated woodpecker, and black-backed woodpecker.
- Benthic habitat at the site is severely limited by the small size and intermittent nature of the stream. Because of this, the benthic macroinvertebrate community should not be used as an indicator of the mine's effects on the stream.

Based on the results of the SI, performance of an Engineering Evaluation/Cost Analysis (EE/CA) is recommended at the Idol City Mine site. As part of the EE/CA, a risk assessment should be performed to assess the human and ecological impacts, establish site removal cleanup standards, and evaluate remediation technologies.

1. INTRODUCTION

EA Engineering, Science, and Technology, Inc. (EA) performed a site inspection (SI) for the U.S. Department of Agriculture, Forest Service (Forest Service) at the Idol City Mine site, locate d in the Malheur National Forest near Burns, Oregon. The work was performed under Contract Number 53-0604-02-33. The SI was performed in general accordance with U.S. Environmental Protection Agency (USEPA) guidance for performing SIs under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

The objectives of the SI were to (1) assess the immediate or potential threat that wastes at the site pose to human health and the environment, and (2) to collect information to support a decision regarding the need for further action under CERCLA and the Superfund Amendments and Reauthorization Act (SARA). Potential contaminant sources identified at the abandoned Idol City Mine site included waste rock and discharges from mine adits.

Preliminary findings of an Abbreviated Preliminary Assessment (APA) preformed by Cascade Earth Sciences in October 2002 (CES 2002) indicated that waste rock piles associated with mining operations at the site occur within and adjacent to the floodplain of the Gold Gulch drainage. Soil and waste rock sampling indicated that arsenic and lead exceeded USEPA Region 9 Industrial Preliminary Remediation Goals (PRGs) for soil. Based on the limited APA sampling and the proximity of waste rock to the Gold Gulch drainage and Trout Creek, performance of a SI was recommended.

Tasks performed during the SI included background research and file review, onsite and offsite reconnaissance, and collection and analysis of soil, waste, surface water, pore water, sediment, plant tissue, and benthic macroinvertebrate samples. Field work for the SI was performed from 20 to 23 July 2003. The SI was performed in accordance with the project plans, including the Work Plan (EA 2003a), Sampling and Analysis Plan (EA 2003b) and Health and Safety Plan (EA 2003c). These plans were prepared for the Idol City Mine, together with 3 other abandoned mines in the Malheur National Forest. Investigations at the other 3 mines were not completed during the 2003 summer field season due to work restrictions caused by extremely high fire danger. Field methods used at the Idol City Mine site followed the Standard Operating Procedures initially prepared for the site (EA 2003d), except as modified for conformance with work at additional mine sites (EA 2003e). A number of modifications to the sampling locations and techniques were made in the field, based on site observations and field conditions, and with the concurrence of the Forest Service On-Scene Coordinator (OSC). These modifications are documented in Appendix A.

Descriptions of the site, operational history, and wastes generated are provided in Section 2. The results of the SI, along with discussions of the groundwater, surface water, soil, and air exposure pathways, are provided in Section 3. A summary and conclusions are provided in Section 4. The appendixes include a list of deviations from the project plans (Appendix A), site photographs (Appendix B), a General Information Form for the site (Appendix C), copies of supporting information (Appendix D), aquatic and terrestrial investigation tables (Appendix E), a soil sample log (Appendix F), laboratory analytical reports (Appendix G), and survey information and waste pile calculations (Appendix H).

2. SITE DESCRIPTION, OPERATIONAL HISTORY, AND WASTE CHARACTERISTICS

2.1 DESCRIPTION AND LOCATION

The abandoned Idol City Mine site is located approximately 15 mi northeast of the city of Burns, in Harney County, Oregon. It occurs within the Harney Mining District, also known as the Idol City-Trout Creek District, in Malheur National Forest. The site extends from Trout Creek southward approximately 0.8 mi along the Gold Gulch drainage. The location descriptions for the north and south ends of the site are:

- North: Latitude 43.777930186° N, Longitude 118.891650107° W
- South: Latitude 43.767930440° N, Longitude 118.895279259° W
- Township 21 South, Range 32 East, Section 4 SW 1/4 and Section 9 NW 1/4.

The site is included on the Devine Ridge North, U.S. Geological Survey (USGS) 7.5-minute topographic map. It is situated between about 5,600 and 5,800 ft in elevation. The site location is indicated on Figure 1.

The Idol City Mine site lies along Forest Service (FS) Road 630. It is accessed from State Highway 395 by going east on FS Road 2820 for approximately 1 mi, continuing east on FS Road 3935 for a little over 3 mi, then heading south on FS Road 600 for approximately 2 1/3 mi. At the site, FS Road 630 turns off to the south next to several old wooden buildings. The main mining area occurs approximately 400 ft south of FS Road 600, and is located on a bypass road that runs between FS Road 630 and an unnamed stream and wetland area. The remaining site features extend approximately 0.8 mi to the south along FS Road 630 and within the Gold Gulch valley. The general boundaries of the study area were identified in the field by the OSC.

The site includes a disturbed area of approximately 15 acres on moderate to steep slopes. It is easily accessible to the public. A gate was being installed across FS Road 630, south of the intersection with FS Road 600 and north of the main mining area, during performance of the SI. Based on a conversation with Forest Service personnel at the site, the gate (and a planned cattle guard) was being installed to prevent access by cattle, not by the public.

The site is currently inactive. There are a number of old wooden structures onsite, all in poor condition. The primary mining area occupied approximately 3 acres near the north end of the site; existing features in this area are shown on Figure 2. Figure 3 includes features throughout the site area. Photographs of the site are provided in Appendix B. A General Information Form for the site is included in Appendix C.

Only the larger ponds and excavations are shown on the site figures. Waste piles are located throughout the gulch; most of these presumably are from placer mining and from surface excavations or trenching. In general, sampling activities were focused on areas of apparent or probable underground mining. Samples also were collected from a few piles which either appeared to be from placer mining (for comparison purposes) or which were of uncertain origin. In the following descriptions of site features, an attempt has been made to distinguish between waste pile materials, based on location and visual observations. Soil or waste rock piles may be referred to as resembling surrounding soil (probably from placer mining or trenching) or consisting of lighter-colored material (probably from underground mining).

Volumes of waste piles likely generated during underground mining activities were calculated by Anderson Perry & Associates, Inc., following performance of the site survey. The estimated total volume

of these materials is approximately 2,000 cubic yards. Information on the derivation of this number, and the waste piles included in the calculation, is provided in Appendix. H.

Many of the site features (structures and excavations) are collapsed or in generally poor condition; interpretation of the features is difficult. Information regarding site features was obtained from the following sources:

- Mine Operating Plans obtained from the Malheur National Forest Supervisor's Office
- A Mineral Exam Report prepared in 1968 (Forest Service 1968)
- A report of inspections by Malheur National Forest Minerals Technicians during 2000 and 2001 (Forest Service 2001a and b)
- The APA performed in 2002 (CES 2002).

Numerous claims historically have been made within and adjacent to the Idol City Mine site. One active claim, the Jumping Jack placer claim, exists to the south of the site. Maps showing claim locations are provided in Appendix D.

Site features are listed generally in order of north to south. Features, or nearby groups of features, have been assigned letters; these correspond with the designations on Figures 2 (A through M) and 3 (N through S). The site generally consists of the following:

- A. Bunkhouse (photos 1 and 2) this is a small building at the north end of the site, located on the former Imperial claim.
- B. Main house (photos 1 and 3) this is a larger building or cabin near the entrance to the site, located on the former Imperial claim.
- C. Collapsed log structure (photo 4) this structure is located near the entrance to the site, on the former Imperial claim.
- D. Apparent collapsed adit (photo 5) this consists of an excavation with a small opening at the eastern end, located on the former Bullion claim.
- E. Trash pit (photo 6) this is a small excavation filled with old bottles, cans, and other debris. It is located on the former Bullion claim. The 1968 Mineral Exam map indicates the possible presence of a caved tunnel in this area.
- F. Possible fruit cellar (photo 7) the Forest Service referred to this small wood-framed pit as a fruit cellar because jars were seen on its roof (Forest Service 2001a). It is located on the former Bullion claim.
- G. Head frame (photo 8) this partially collapsed wooden structure is located on the edge of the wetland area, on and adjacent to several small light-colored waste rock piles. It is located on the former Bullion claim.
- H. Collapsed inclined shaft (photo 8) this feature was tentatively identified based on photographs and information in the 1968 Mineral Exam Report. At the time of the field work, this feature appeared as a small, water- and debris-filled depression immediately south of the head frame; it is located on the former Bullion claim.

- I. Apparent collapsed adit/excavation (photo 9) this feature is located on the west side of the gulch and consists of an excavation and several lighter-colored waste rock piles (photo 10) adjacent to and in the gulch. According to the 1968 Mineral Examination Report, this was an open cut at what was previously a short adit. It is located on the former Bullion claim.
- J. Collapsed log structure with open shaft (photos 11 and 12) this partially collapsed building surrounds a water-filled shaft. Several light-colored piles of waste rock merge into one large pile adjacent to and west of the building, and extending into the wetland area. This feature is located on the former Bullion claim.
- K. Collapsed adit or prospect (photo 13) this excavation is located immediately north of the log structure with open shaft, and was also on the former Bullion claim.
- L. Old truck with mounted ball mill (photo 14) the truck is located on the former Bullion claim at the southern end of the main mining area.
- M. Small wooden building the use of this building is unknown. It is located on the former Bullion claim, just west of the old truck.
- N. Excavations several excavations occur in this area along with piles that appear to consist of excavated soil. One of the excavations on the east side of the gulch has a small seep (as evidenced by green vegetation but no flow) on the western end. This area appears to occur near the dividing line of the former Bullion No. 2 and Trapper No. 2 claims.
- O. Excavation adjacent to large pond (photo 15) a small seep (wet but not flowing at the time of the field work) is present at the base of the excavation, flowing toward the large pond. This area appears to be located near the dividing line of the Jumbo No. 3 and No. 4 claims. The 1968 Mineral Exam map indicates the possible presence of a cut and a caved discovery tunnel on the east side of the gulch in this area, and of a caved discovery shaft immediately west of Road 630.
- P. Excavation and possible collapsed adit (photo 16) a pile of lighter-colored waste rock is present at the western end of the excavation. This excavation, or that designated as "O" may be the "caved discovery tunnel" identified on the 1968 Mineral Exam map. This area may occur within the former Jumbo No. 1 or Jumbo No. 3 claim.
- Q. Excavation and waste rock piles an excavation with evidence of a small seep was observed in this area. The 1968 Mineral Exam map indicates the possible presence of a caved discovery shaft in this area. Soil or waste rock piles west of the excavation almost completely block the gulch; only a thin cut is present, through which the stream flows (photo 17). The piles in this area appear similar to the surrounding soil; they may consist of overburden from trenching or excavating or may be a result of placer mining. This location appears to be within the former Jumbo No. 1 claim.
- R. Open adit (photo 18) this adit at the southern end of the study area is partially collapsed. A very low flow of water was observed draining from the adit at the time of the site visit. The adit may be located on the former Pardee claim.
- S. Collapsed building and large waste pile (photo 19) remnants of a collapsed building are present across Road 630 from the open adit. According to the Forest Service, the building may have been an ore-processing site or a residence (2001). The building appears to have been constructed on top of a large waste rock or tailings pile, which extends down the hillside into the gulch. Some

fine-grained, light tan-colored material was observed at depth in this pile during sampling (photo 20). This area may be located on the former Pardee claim.

In addition to the identified features, several trenches were observed on the hillside on the east side of Gold Gulch and many smaller excavations were observed along Road 630. Miscellaneous equipment and debris (logs, timber, metal, and rusted drums) were observed onsite, primarily in the northern or main working area.

According to the Forest Service (2001b), the State Historic Preservation Office has concurred that the site is eligible for the National Register of Historic Places.

2.2 OPERATIONAL HISTORY AND WASTE CHARACTERISTICS

According to Brooks and Ramp (1968), a small amount of underground mining has been done at Idol City, but most of the gold has come from placer mining in the valley fill. Placer mining in the area reportedly yielded about \$50,000 worth of gold between the time of its discovery in 1891 and 1916 (Brooks and Ramp 1968). More recent activities at the site have included open pit mining in the form of trenches and excavations, as surface soil has been removed to access veins present along the surface of shallow bedrock for geological evaluation and testing (Noranda 1982).

The following history of the site is based primarily on information from the Malheur National Forest Supervisor's Office, File 2810 (Forest Service 2001b):

- 1891 Placer deposits were discovered in Trout Creek in the Idol City area.
- 1914 Trout Creek Mining and Milling Company was organized by O.J. Darst, one of the original locators of several claims at the site. The veins explored during this period were reported to contain valuable concentrations of gold, silver, lead, and zinc (Forest Service 1968).
- 1930s A dredge was moved into the Trout Creek area and a small mill was erected by Trout Creek Mining and Milling Company. There is no known production from the property. The old mill building was reported to be present at the site as late as 1968 (Forest Service 1968); however, its location and current condition are not known.
- NA The heirs of the estate deeded the property to Mary Riddell Martin, daughter of the late C.W. Riddell. Subsequent operating plans and correspondence were submitted by H.A. Martin, her husband.
- 1968 Mineral examinations were performed for H.A. Martin at 10 claims and sampling was performed at 3 claims including cuts on Trapper No. 2 and Jumbo No. 3, and the 70-ft inclined shaft on Bullion. The inclined shaft was dewatered before sampling. Cuts or shafts on the other claims were caved, and sampling was not possible.
- 1972 A Supplemental Mineral Examination was performed for the inclined shaft on the Bullion claim.
- 1975 through 1980, Operating Plans for the site were submitted by H.A. Martin. Planned activities included extending open cuts to expose lode (including a vein crossing the creek), excavating surface materials to reopen caved tunnels, tracing vein structures, opening up and

developing 2 springs near the north line of the Trapper No. 1 claim, testing gravel, performing test drilling on numerous veins and lodes, and prospecting and mill testing.

- 1980 An Operating Plan was submitted by Lester Rhoads for claims formerly known as Pardee, apparently extending south of the study area. Planned activities included extending an excavation along the creek bed to expose bedrock, examining materials in open cuts and ditches, tunneling 10 ft into a vein, and installing a "gold machine" in the ditch.
- 1981 An Exploration and Option Agreement was signed between Lester Rhoads, Arnold Dobson, and Donald C. Farley ("optioners") to Noranda Exploration, Inc. ("optionee") for 6 claims, apparently extending south of the study area.
- 1981 An Exploration and Option Agreement was signed between H.A. Martin and Mary R. Martin ("optioners") to Noranda Exploration, Inc. ("optionee") for 10 claims including the Imperial, Bullion, Bullion No. 2, Bullion Extension, Trapper No. 1 and 2, Jumbo, and Jumbo No. 2, 3, and 4.
- 1982 Noranda Explorations, Inc. submitted an Operating Plan describing their intent to excavate a trench (approximately 1,000 ft long) to the bedrock surface for evaluation purposes. The trench was to be backfilled on completion of the evaluation. (The intended area for trenching appears to be near the southern end of the site.)
- 1983 \$1,000 cash in lieu of bond paid by Noranda Explorations for reclamation of the Idol City project.

Based on Mineral Examination Reports and information from Operating Plans for claims at the site, there were many discovery cuts or shafts and some short adits at one time; most have since collapsed. Some of the older caved tunnels were later reopened by excavation. Veins occur near the bedrock surface in portions of the site, and extensive trenching and excavation of shallow soil has taken place to expose bedrock. Some of these excavations have taken place within the streambed, to expose shallow veins. Much of the trenching work done in more recent years was for evaluation purposes.

While extensive exploration and testing has taken place at the site, it appears that production from lode mining has been minimal. Mineral examination reports have indicated that what mineralization is present is spotty and that the presence of a valuable mineral deposit has not been conclusively shown (Forest Service 1968, 1971).

Wastes generated at the site include waste rock from the mining operations. It is uncertain if any materials were milled on the site. Additional wastes include the remains of former structures and equipment used onsite. No specific information was found regarding mining wastes generated at the site. No documentation was found of past removals or cleanups at the site.

Potential concerns identified by the Forest Service (2001a) in their Site Discovery Form for the Idol City Mine include:

- Drainage from the adit or waste rock
- Discharges to surface water
- Presence of waste rock
- Impacted area located in a floodplain
- Easily accessed by the public

- Potential or known impacts to Threatened and Endangered (T&E) species and/or sensitive environments such as wetlands and streams
- Physical hazards, such as open shafts, adits, and pits
- Dredging or other significant stream channel modifications.

No listings for the Idol City Mine were found by a search of state and federal databases of sites with known or suspected contamination.

3. PATHWAY AND ENVIRONMENTAL HAZARD ASSESSMENT

3.1 GROUNDWATER

3.1.1 Geology

Little site-specific information is available regarding the geology of the Idol City Mine area. The site occurs in the Harney or Idol City-Trout Creek Mining District (Brooks and Ramp 1968); this is a very small district apparently centered near the Idol City Mine site. Few of the formations in the area have been formally named and described, but they generally consist of lavas, tuffs, and alluvium (Forest Service 1968).

The geology of the Harney District is generally described by Brooks and Ramp (1968) as follows:

"..The country rock is a porphyritic andesite of probable late Miocene age. The andesite underlies most of the larger hills in this region and presumably is a part of the Strawberry Volcanics (Brown and Thayer, 1966). Mineralization appears to be confined to a northwest-trending shear zone along which the andesite has been altered or bleached for a distance of at least a mile."

An inclined shaft was drilled in the main working area, near the northern end of the site. According to the 1968 Mineral Examination Report:

"The inclined shaft on the Bullion claim is 70 feet deep on a 45° slope, and at the bottom a short drift extends 21 feet to the west along a structure that dips 43° to the south. This structure is supposedly the vein followed by the shaft."

Samples collected in 1968 from within the inclined shaft indicated the presence of localized lenses of quartz with visible heavy sulfides (mainly galena) and relatively high economic values; however, nearby samples from the same vein structure had little economic value. The 1968 Mineral Examination Report and the Supplemental Report of Mineral Examination both concluded that only minor values of ore were present at the site (Forest Service 1968, 1971). According to Operating Plans submitted for claims at the site, a number of small veins run through the site area and some can be traced along the bedrock surface.

Both placer and lode mining have taken place at the Idol City Mine site. In addition, shallow trenches have been excavated in several areas of the site to allow exploration of shallow bedrock. Based on information supplied in Operating Plans for claims at the site, bedrock occurs at a depth of less than 10 ft in portions of the site. Piles of waste rock, tailings, and soil are located throughout Gold Gulch; most of these are from placer mining or shallow excavations and have a coloration and composition similar to the surrounding soils. However, some of the waste rock piles are from lode mining; these typically are much lighter in color.

3.1.2 Hydrogeology

No discussion or documentation of groundwater conditions at the site or in the site vicinity was found. Shallow groundwater discharges as seeps or springs in the site area and flows to the local creeks. During the field investigation, evidence of seeps was observed onsite at several of the larger excavations and possible collapsed adits, although flow was minimal. Groundwater also was discharging (although at a flow so low that it was not measurable) from the open adit at the southern end of the site. Shallow groundwater likely does not form a laterally continuous aquifer in the site area due to the irregular

topography and presence of shallow bedrock. Underground mining in this area reportedly takes place within a shear zone which likely controls groundwater flow to some extent.

During a search for wells in the site vicinity (see section below), the closest well found occurred at the Joaquin Miller Campground, located on the west side of Highway 395, just over 4 mi from the Idol City Mine site. According to Oregon Water Resources Department (WRD) records, this well was installed in 1993 for the Ochoco National Forest. First water reportedly was encountered at a depth of 95 ft during drilling. The well was completed to a depth of 150 ft and the static water level, as measured upon well completion, was 52.6 ft. The reported water levels indicate that the well likely draws water from a deeper, confined or semi-confined aquifer.

No groundwater samples were collected during the SI. However, a water sample was collected from the discharge at the open adit. Because this discharge is more likely to impact surface water quality, analytical results for the sample are discussed with the surface water samples in Section 3.2.5.

3.1.3 Targets

The target distance for groundwater has been defined as a 4-mi radius from the site (Plate 1). Potential receptors include drinking water wells and wellhead protection areas. No records were found of drinking water wells, either public or private, within a 4-mi radius of the site, based on a search of the Oregon WRD database for water wells. There are no wellhead protection areas within a 4-mi radius of the site. Based on the above information, groundwater is not used for drinking within 4 mi of the site.

3.1.4 Groundwater Exposure Pathway Summary

Based on the available information, no release of hazardous substances from the mine to local groundwater systems is suspected. In addition, no evidence was found of the use of groundwater for drinking water within the target area. Therefore, the groundwater pathway appears to be incomplete. Groundwater that discharges from the adit(s) may impact nearby surface water bodies; these sources are discussed in the following section.

3.2 SURFACE WATER

3.2.1 Hydrologic Setting

The site occurs near the headwaters of Trout Creek, a tributary of Silvies River. An unnamed intermittent stream flows through Gold Gulch, along and through the Idol City Mine site. The stream flows generally northward and discharges into Trout Creek at the northern end of the site. Based on information from National Wetlands Inventory (NWI) maps, Trout Creek is characterized as an intermittent stream in the vicinity of the site, but as a perennial stream approximately 5 mi downstream of the Idol City Mine site.

According to USGS maps, the Gold Gulch watershed covers an area of less than 1 square mile. All of the site area occurs within this watershed. The unnamed stream in Gold Gulch originates a short distance south of the Idol City Mine site. It is fed by several springs and seeps upstream of the mine area. Pardee Spring, located northwest of the southern end of the Idol City Mine site, is one of the larger springs; it feeds into the stream in Gold Gulch near the center of the site (Figure 3). At the time of the SI field work, minimal flow was evident in some areas of the stream, but the streambed was dry in others. The average width of the stream in Gold Gulch was very narrow, at approximately 8-18 in. The average depth was only 2-4 in. in areas that contained water.

Several ponds of varying sizes are located along the Gold Gulch drainage. These were likely excavated during placer mining or trenching in the gulch. Piles of waste materials, from both placer and lode mining, are spread throughout the gulch. In one area, the piles extend almost completely across the gulch and have only a narrow cut allowing the stream to flow through (photo 17). Surface water and sediment samples were collected from 2 of the ponds for field and laboratory analyses. These included a large pond (sampling station 13, approximately 2-6 ft deep) near the center of the site area, and a small pond (sampling station 14, approximately 1 ft deep) further downstream, near the main working area. A large emergent wetland area surrounded the second pond; stream flow was not measurable in this area at stream station 05.

In the southern part of the site, the topography is fairly steep and the Gold Gulch stream flows along a narrow path down the hillside. The topography flattens out near the main mining area, at the north end of the site. In this area, the stream has a broad floodplain containing emergent wetland vegetation. The stream did not have a well-defined course directly upstream of and at the confluence with Trout Creek. The stream course appears to have been altered by mining activities throughout most or all of the site area and is dispersed by the wetland area leading into Trout Creek.

Water discharges from the open adit on the western slope of the gulch, at the southern end of the site. At the time of the SI field work, this discharge volume was very small (flow was not measurable) and the water was observed to flow down FS Road 630 for a short distance before it infiltrated the ground. At several other excavations or possible collapsed adits, evidence of drainage was observed, although the flow was minimal to nonexistent at the time of the field work.

Two locations along the unnamed stream in Gold Gulch and 1 location on Trout Creek were selected for sampling based on conversations with the OSC (Figure 1). The locations, from upstream to downstream, were as follows:

- The reference sampling station (Station 07) was located in the Gold Gulch stream, approximately 75 ft upstream of the southern (open) adit. Although this location is upstream of the Idol City Mine, it is downstream of several mining claims and at least 1 active claim (Jumping Jack placer mine). There were no unimpacted areas to use for reference. The stream at Station 07 flowed within a defined channel; however, the flow was minimal at the time of sampling. The current velocity was measured at 0.03 ft per second. Stream depth at this station averaged 4 in. and the width of the channel was 8 in. Exposed substrate indicated that increased flow volume must occur at other times of the year. Macroinvertebrate habitat was severely limited during the sampling event due to the lack of water in the stream.
- Station 05 was located adjacent to the main working area, in the northern portion of the site.
 While a very shallow and narrow stream channel existed at this location, evident by the existence
 of stream substrate within the channel, flowing water was non-existent. The stream width was
 approximately 8 in. Water sampling was conducted by creating a depression in the substrate and
 allowing it to fill with water. Macroinvertebrate sampling was conducted by hand picking
 organisms from the substrate.
- Station 06 was located approximately 300 ft downstream of the mine, on Trout Creek. Placer mining has historically taken place along this section of Trout Creek, as it has along much of the creek bed. During sampling, the creek had a depth of approximately 6 in. and a width of approximately 18 in. Water filled the channel at this location, but flow was not measurable. Substrate within the stream channel was similar to that found in Gold Gulch, mostly consisting of gravel, sand and silt. Macroinvertebrate sampling was conducted by kick netting and sweeping the disturbed fauna into the net by hand.

3.2.2 Targets

A target distance of 15 mi downstream has been identified for the surface water pathway. Potential targets include surface water intakes supplying drinking water, sensitive environments (i.e., wetlands), fisheries, and aquatic species of concern. The 15-mi target distance limit (TDL) is shown on Plate 2. The TDL extends approximately 12 mi along Trout Creek in a generally northwesterly direction, from its confluence with the Gold Gulch stream (at the northern end of the site) to the point where it discharges into the Silvies River. Approximately 3 mi of the Silvies River, downstream of the confluence with Trout Creek, are also included in the TDL.

Records obtained from the Oregon WRD indicate that there are no surface water intakes within the 15 mi downstream reach. According to the Forest Service, there are no designated, developed campsites within the TDL, however there are likely numerous dispersed campsites located along roads paralleling both Trout Creek and the Silvies River. A dispersed campsite is an unauthorized one developed by the user, is typically located next to an open road, and often consists of a parking spot and a fire ring. Such a campsite was observed in use by the EA field team on Trout Creek approximately 1.5 mi downstream of the site. Campers using this type of campsite, along with the occasional miner working a claim, may withdraw drinking water on an individual basis from streams within the TDL.

Prior to conducting the fieldwork, the following activities were performed to obtain background information:

- A list of Threatened and Endangered (T&E) species and Species of Concern (SOC) for Malheur National Forest, Harney County, and the Blue Mountain Ecoregion was generated based on information obtained from the Oregon Natural Heritage Program (ONHP 2001).
- Habitat information from *Flora of the Pacific Northwest* (Hitchcock and Cronquist 1973) was used to identify plant species that could potentially occur at the Idol City Mine site and to refine the list generated from the Malheur National Forest.
- The Oregon Natural Heritage Information Center (ONHIC) was contacted regarding any recorded observations of botanical or wildlife T&E species and SOC at or near the Idol City Mine site; there were no recorded observations within a 2-mi radius (the available search range) of the site (ONHIC 2003).
- Onsite wetlands were identified using the NWI 7.5 minute topographic map for Devine Ridge North (NWI 1994).

Lists of sensitive plants in Malheur National Forest and listed wildlife species in the Blue Mountain Ecoregion of Harney County are provided in Appendix E.

Habitat reconnaissance surveys were conducted at the Idol City Mine site along Gold Gulch, between the confluence with Trout Creek and approximately 1 mi south, on 21 and 22 July 2003. The surveys were performed to determine the existing habitat conditions, species composition, the presence of wetlands and other water features, and if T&E species or SOC currently exist at the site or background stations. One terrestrial background station was located offsite of the disturbed Idol City Mine site and 1 downstream station was located along Trout Creek. The habitat was characterized through documentation of dominant plant species observed (including canopy and understory species), aquatic resources present, habitat conditions observed, and photographic notes. The National Vegetation Classification Standards (NVCS) were used to consistently characterize the vegetation types.

Wetland area information was obtained by comparing information from NWI maps to field observations and the definitions of a wetland as defined by CERCLA (40 CFR 230.3). There are no wetlands mapped by the NWI onsite, including the intermittent streams in Gold Gulch and Trout Creek. However, of the 15-mi TDL, approximately 11 mi of Trout Creek is mapped either as a riverine wetland itself, or bordered by palustrine wetlands. Although not mapped by NWI, 3 palustrine emergent (PEM1) wetlands were observed and identified onsite in the field. The identified wetlands are the result of and supported by the creek in Gold Gulch; the water collects just south of the confluence with Trout Creek. Standing water, anoxic soil conditions, and aquatic and emergent obligate wetland vegetation were observed in these areas, supporting the CERCLA definition of a wetland. Aquatic vegetation observed within the wetlands included white water buttercup and American speedwell, both obligate, hydrophytic vegetation. Additional hydrophytes observed included creeping spikerush, bur-reed grass (*Sparganium emersum*), and various rush (*Juncus* spp.) and sedge (*Carex* spp.) species.

The ONHP database search identified two species of fish (Malheur mottled sculpin and bull trout) that occur in the high elevations of Harney County and could occur in the site area; however, no fish were observed during the sampling effort. According to an Oregon Fisheries Biologist, a light to moderate level of recreational fishing takes place in downstream portions of Trout Creek and in the Silvies River within the 15-mi reach. Fish caught in these areas typically include redband trout in Trout Creek and smallmouth bass, bluegill and perch in the Silvies River.

Four species of amphibians and reptiles were found in the ONHP database, but the high elevation of the mining sites eliminates most of these species except 2; Columbia spotted frog and western rattlesnake (see Appendix E). However, 2 additional amphibians not listed for Harney County but listed in other Oregon counties were found in the large pond at the site (near sampling station PD-13):

- Northern red-legged frog (*Rana aurora*) tadpoles this species has a Federal Status of Species of Concern (SOC) and an Oregon Department of Fish and Wildlife (ODFW) Status of Vulnerable/Undetermined Status (SV/SU).
- Oregon spotted frog (*Rana pretiosus*) adults this species has a Federal Status of Candidate (C) and an ODFW Status of Critical (SC).

Additional reptiles and amphibians collected at the large pond included garter snake (*Thamnophis sirtalis*), Pacific tree frog (*Hyla regilla*) tadpoles and adults, and rough-skinned newt (*Taricha granulosa*) larvae. The large pond where these species were collected provides water resources and high-quality habitat for aquatic vertebrates and invertebrates in a predominantly dry, arid region. At least 5 species of aquatic vegetation (white water buttercup, American speedwell, duckweed, water-starwort, and creeping spikerush) were observed at the pond. The large size of the pond and the diversity of aquatic vegetation provide an ideal habitat for amphibian and reptile species. It is unlikely that other water resources in the immediate area (including the smaller pond sampled) could support the observed, or additional, listed amphibian species.

3.2.3 Aquatic Survey Results

Aquatic surveys were conducted to assess the impact, if any, of the Idol City Mine site on the benthic macroinvertebrate community, presence of fish species, and habitat parameters. Most notable at the site was the limited habitat to support a healthy benthic macroinvertebrate or fish community. The intermittent nature of the stream severely limits the abundance and composition of the benthic macroinvertebrate community. Only taxa specifically adapted to this type of system would be expected to

compose a major percentage of the community. It was also apparent that the lack of water and limited habitat prevent the existence of a permanent fish community.

No fish species were collected or observed in the Gold Gulch stream, Trout Creek, or the 2 ponds sampled at the Idol City Mine site. At the time of sampling, the intermittent streams were both too small and shallow to support any type of fish species; therefore seining was not conducted. Due to the limited size and sometimes absence of free-flowing water at the stream locations, kick-netting to collect benthic samples could not be conducted in accordance with Oregon Department of Environmental Quality (ODEQ) methods at any of the stream stations. However, invertebrate species were collected by a combination of modified kick netting and handpicking of organisms from substrate material in the channel at the steam sites. Benthic macroinvertebrates were collected by these modified techniques in an effort to get some kind of qualitative view of the community at the site. These techniques provided the only available method to observe the community composition at the site, rather than eliminating the collection of macroinvertebrate data all together. Macroinvertebrates were also collected from the large pond sampled (Station 13), using the net to collect benthic samples from the available sediment and aquatic vegetation.

Laboratory sorting of benthic macroinvertebrate samples was conducted in accordance with ODEQ methods and evaluated using a multi-metric analysis, Level 3 Assessment (ODEQ 2001). However, since the field collection methods could not be performed using the ODEQ methods, the metrics were calculated, but scores were not assigned to the metric values or total scores calculated. The metric information is provided to facilitate basic comparisons among the sites without attempting to attach any significance to the results (i.e., compare them to regional or state data). Tables listing the number and relative abundance of the taxa collected, as well a summary of Level 3 metrics, are provided in Appendix E.

Three orders of insects, Ephemeroptera (mayflies), Plecoptera (stonefiles), and Trichoptera (caddisflies), collectively referred to as EPT, are considered to be the most sensitive or responsive to impairment within the system. Therefore, EPT richness or abundance is included in the multi-metric analysis. While EPT taxa were present at the site, 2 of the stream stations (Stations 06 and 07) were dominated by midges (Tanytarsini). Midges, in general, are a tolerant order of insects, and often predominate at sites with limited or marginal habitat. However, the area in general exhibits a decent diversity of taxa as well as a fairly low percentage of tolerant taxa, which indicates that if the site were **not** habitat limited, a healthy benthic macroinvertebrate community could exist. None of the areas sampled appeared to be impaired by effects from the site, but the macroinvertebrate community is certainly habitat limited.

Of the 3 stream sites sampled, Station 05 produced the least abundance and richness of taxa; this would be expected since this station was the most severely limited by its habitat. The station consisted of no free-flowing or standing water and was only wet when substrate material was flipped over and removed. Following is a summary of the general findings of the macroinvertebrate sampling:

- Gold Gulch and Trout Creek (in the site area) are intermittent streams.
- The streams are not biologically dead as evidenced by the existing benthic macroinvertebrate community.
- The area is probably supporting the best community the limited habitat will allow.
- The limited habitat is driving the benthic macroinvertebrate community at this site. Therefore, the community should not be used as an indicator of the mine's effects on the stream.

Habitat was evaluated at each of the 3 stream stations, in accordance with the methods stated in the project plans; habitat scores are presented in Appendix E. As mentioned previously, habitat to support aquatic organisms is severely limited at this site. All 3 sites rank as marginal habitat using the USEPA Rapid Bioassessment Protocol (RBP; Barbour 1999).

3.2.4 Previous Investigations

Four surface water samples were collected at the site during performance of an APA in October 2002 (CES 2002). The samples were analyzed *in situ* using a Horiba U-22 meter. Samples were collected from the open shaft, a trench south of the shaft, "Adit 1" (the southernmost or open adit), and "Adit 4" (an apparent collapsed adit on the east side of the drainage). Sample analyses and results were as follows:

Location	На	Specific Conductance (uS/cm)	Turbidity (NTUs)	Dissolved Oxygen (mg/L)	Temperature (° Celsius)	Total Dissolved Solids (mg/L)	Redox Potential (millivolts)
Shaft	7.84	0.505	87.4	2.86	5.68	320	57
Trench	8.8	0.964	438	7.83	1.64	630	16
Adit 1	7.7	1.08	101	2.75	5.69	700	-12
Adit 4*	8.02	0.782	NA	3.51	4.79	500	120

NOTE: uS/cm = Microsiemens per centimeter.

NTUs = Nephelometric turbidity units.

mg/L = Milligrams per liter.

NA = Instrument was not working properly.

3.2.5 Analytical Results

Locations of stream and pond samples collected during the SI are indicated on Figures 1 and 2. Photographs of selected sample locations are provided in Appendix B. Analytical results for surface water, pore water, and sediment samples are presented in Tables 1, 2, and 3, respectively. Only those constituents detected in 1 or more samples are included in the summary tables. Dissolved metals concentrations were used for comparison with surface water screening criteria, and are included in Tables 1 and 2. Total metals concentrations for surface water samples are presented in a summary table in Appendix G, along with copies of the laboratory reports.

Six surface water samples, 3 pore water samples, and 6 sediment samples were collected during the SI including the following:

- Three stream surface water samples
- Two pond surface water samples
- One adit surface water sample
- Three stream pore water samples
- Three stream sediment samples
- Two pond sediment samples
- One adit sediment sample.

Field analyses performed on surface water and pore water samples included temperature, pH, dissolved oxygen, specific conductance, turbidity, and redox potential. Laboratory analyses performed included the following:

^{*} No deep pools of seep water were available for this reading: this may affect some results.

- Surface water pH, Target Analyte List (TAL) metals (total and dissolved), cyanide, total dissolved solids (TDS), total suspended solids ([TSS], organic and inorganic), hardness, alkalinity, specific conductance, redox potential (Eh), and sulfate
- Pore water pH, dissolved TAL metals, cyanide, TDS, hardness, alkalinity, specific conductance, Eh, and sulfate
- Sediment TAL metals, cyanide, total organic carbon (TOC), and grain size.

Field water quality measurements were obtained in water samples collected at each stream station and from the ponds. Field water quality measurements are presented in Tables 1 (surface water) and 2 (pore water). Trends observed include the following:

- All pH measurements fell between 6.8 and 7.8, including the water sample from the adit. No evidence of acid mine drainage (AMD) was observed.
- Specific conductivity was high at the open adit, but measurements did not vary widely among the other samples (from streams and ponds).
- Dissolved oxygen measurements were below 6 mg/L in samples collected at the open adit (1.33 mg/L), Station 05 (5.48 mg/L) and Station 06 (3.44 mg/L). The low measurements obtained in the two stream samples likely were due to the stagnant nature of the sampled water.

Criteria for comparing measured concentrations of metals in surface water and pore water consist of the following human health and ecological screening values:

- ODEQ Water Quality Criteria, Protection of Aquatic Life, Fresh Chronic Criteria (Oregon Administrative Rules [OAR] 340-041-001); hardness-dependent values (cadmium, copper, lead, nickel, silver, and zinc) were calculated based on the hardness for each sample, and the range of values is provided in the data tables.
- ODEQ Water Quality Criteria, Protection of Human Health, Water, and Fish Ingestion (OAR 340-041-001).
- ODEQ (1998) Guidance for Ecological Risk Assessment, Level II Screening Values for surface water; these values are based on previous USEPA water quality criteria that have been superceded by the USEPA (2002) recommendations for ambient water quality criteria for freshwater organisms.
- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms, chronic; hardness-dependent values were calculated separately for each sample.
- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms,
 Tier II secondary chronic values calculated by Oak Ridge National Laboratory (Suter & Tsao 1996).
- USEPA (2002) recommended ambient water quality criteria for protection of human consumption of fish; hardness-dependent values were calculated separately for each sample.
- Oak Ridge National Laboratory, U.S. Department of Energy (Efromyson, et. al. 1997), PRGs.

Of these screening values, comparisons were made with the lowest value available. Criteria for comparing measured concentrations of metals in sediments consist of the following values:

- Threshold Effects Level (TEL) and Probable Effects Level (PEL) from USEPA National Sediment Quality Survey, Screening Values for Chemicals Evaluated http://www.epa.gov/waterscience/cs/vol1/appdx_d.pdf).
- Effects Range-Low (ER-L) and Effects Range-Medium (ER-M), National Oceanic and Atmospheric Administration (NOAA), from USEPA (1997) National Sediment Quality Survey, Screening Values for Chemicals Evaluated.
- ODEQ (1998) Guidance for Ecological Risk Assessment, Level II Screening Values for freshwater sediment.

Results of the metals analyses for surface water, pore water, and sediment samples are provided in Tables 1, 2 and 3, respectively, and are discussed in the following table.

Summary of Surface Water, Pore Water, and Sediment Sample Metals Data

Summary of Surface Water, Pore Water, and Sediment Sample Metals Data							
	Table/						
	Sample	Dissolved Metals Exceeding One or					
Sample Type	No.	More Comparison Criteria	Trends Observed and Comments				
Surface Water	Table 1						
Upstream	(SFW-07)	Barium only	Except for barium, the metals of concern were				
At the mine	(SFW-05)	Arsenic, barium, cadmium, lead,	detected at higher concentrations in the sample				
		manganese, and zinc	collected adjacent to the main working area (SFW-				
Downstream	(SFW-06)	Barium only	05).				
Big Pond	(SFW-13)	Arsenic, barium, and manganese	Arsenic and manganese were detected at higher				
Small Pond	(SFW-14)	Barium only	concentrations in the big pond.				
Adit Discharge	(SFW-12)	Arsenic, barium, calcium, iron, and	All metals of concern, except barium, were detected				
		manganese	at the highest concentrations in surface water				
			collected at the adit.				
Pore Water	Table 2						
Upstream	(PW-07)	Barium only	Sample PW-05 had the highest concentrations of				
At the mine	(PW-05)	Aluminum, barium, cadmium, lead,	aluminum, cadmium, lead, and zinc, while sample				
		and zinc	PW-06 had the highest concentrations of barium,				
Downstream	(PW-06)	Barium, iron, and manganese	iron, and manganese.				
Sediment	Table 3						
Upstream	(PSD-07)	Arsenic, copper, and mercury	Concentrations of most of the metals exceeding				
At the mine	(SSD-05)	Antimony, arsenic, cadmium, copper,	criteria were highest in the samples collected from				
		lead, mercury, nickel, silver, and zinc	the stream adjacent to the main working area (SSD-				
Downstream	(SSD-06)	Arsenic, copper, and mercury	05) and from the small pond (SSD-14) in the same				
			area.				
D: D 1	(DGD 12)	T					
Big Pond	(PSD-13)	Arsenic, copper, and mercury					
Small Pond	(SSD-14)	Antimony, arsenic, cadmium, copper,					
		lead, mercury, nickel, silver, and zinc					
A 114	(DCD 12)	L Auginian and a second					
Adit	(PSD-12)	Antimony, arsenic, copper,	Arsenic, antimony, and manganese concentrations				
		manganese, and mercury	were highest in the sample collected at the adit.				

In sediment samples, the percentage of fine material (clay and silt) was higher in the 2 pond samples and in the sample collected at the adit. Sample SSD-14, collected from the small pond near the main mining area, was composed of 94 percent fines. Sediments collected from the streambed were coarser and were composed primarily of gravel.

3.2.6 Surface Water Exposure Pathway Summary

There is evidence of an ongoing release of chemicals to surface water from the Idol City Mine site. Only barium was detected at a concentration exceeding the comparison criteria in upstream and downstream surface water samples. In the surface water sample collected in the main mining area, additional metals detected at concentrations above the criteria included arsenic, cadmium, lead, manganese, and zinc. Sediment samples with the most exceedences of comparison criteria included those collected at the open adit, and from the stream and pond sampling stations in the main working area.

No evidence of AMD was observed and all stream and pond samples had neutral pHs. Benthic habitat was severely limited due to the small size and limited flow of the streams; no clear impacts from the mining activities could be determined.

The lack of water and limited habitat in the streams prevented the existence of a fish community on or adjacent to the site; however, fish occur downstream of the site within the 15-mi TDL. Two listed species of amphibians were observed in a pond at the site; the Northern red-legged frog and the Oregon spotted frog.

3.3 SOIL

3.3.1 Targets

There are no onsite workers and no people who live onsite or within 200 ft of areas of suspected contamination related to the site. A small, windowless wooden building is present a little over 200 ft from the site, on the north side of FS Road 600, on a privately owned parcel. The use of this structure is unknown. The closest regularly occupied building appears to be at least 3 mi from the site. It is estimated that less than 10 people live within a 4 mi radius of the site.

The Idol City Mine site is open to public access. A warning sign citing potential site hazards is present at the north end of the site, near the main building. Because the mine area is adjacent to a Forest Service Road, the site has road traffic including all-terrain vehicles. Land uses in the site area include recreation (hiking, hunting, camping, etc.), cattle grazing, and mining on nearby claims.

According to NWI maps, approximately 200 acres of wetlands occur within a 4-mi radius of the site. This corresponds to approximately 8 percent of the 4-mi radius consisting of wetlands. They occur either in the pockets of hollows or other low-lying areas, or along streams and other surface water bodies. The closest wetland is located approximately ¼ mi west of the site in a low-lying area. The types of mapped wetlands (identified within the 4-mi radius) corresponding to a CERCLA wetland consist of:

- PEMA, B, and C Palustrine Emergent Temporarily Flooded/Saturated/Seasonally Flooded
- PSSB and C Palustrine Scrub/Shrub, Saturated/Seasonally Flooded
- PFOB Palustrine Forested, Saturated
- R4SBA and C Riverine Intermittent Streambed, Temporarily/Seasonally Flooded (if emergent vegetation is present).

Plant and Wildlife Surveys

Lists of T&E species, SOC, and sensitive species were generated and refined prior to conducting the fieldwork, as described in Section 3.2.2. Lists of sensitive plants in Malheur National Forest and listed wildlife species in the Blue Mountain Ecoregion of Harney County are included in Appendix E. The ONHIC search provided no records of observations of botanical or wildlife T&E species or SOC within a 2-mi radius of the site.

Habitat reconnaissance surveys were conducted in the site area to establish existing habitat conditions, species composition, and the presence of wetlands and T&E species. Reconnaissance-grade informal wildlife surveys were conducted at the site in conjunction with other field activities and sampling. In addition, the timed meander search (TMS) procedure was used to conduct botanical examination of distinct habitat types using an approach established by Goff (1982) to determine the presence of T&E species and SOC. The approach is a semi-quantitative procedure that documents the level of effort at each station as well as in the discrete habitat types.

Vegetation

The area including and surrounding the mine site contained both scattered and dense scrub, and herbaceous vegetation in the disturbed, open areas and waste piles. Sparse, scrub vegetation was observed growing on the waste and rock piles. Canopy and understory species were dispersed throughout the disturbed area, but predominantly along the edges of the site in the steep adjacent hillsides. The dominant scrub vegetation onsite included squaw current (*Ribes cereum*), snowberry (*Symphoricarpos albus*), sagebrush species (*Artemisia* spp.), immature Douglas fir and ponderosa pine. Herbaceous vegetation observed onsite included lupine (*Lupinus sericeus*), cinquefoil (*Potentilla gracilis*), and Western yarrow (*Achillea millefolium* var. *lanulosa*). A list of plant species observed onsite is included in Appendix E.

Some plant species observed on the waste piles and at the southern (open) adit, including squaw currant and silky lupine, appeared stressed. Visual stress indicators in this vegetation included yellow leaves with green veins (could indicate toxicity or lack of nutrients), leaves with brown tips (could indicate burning), and stunted growth (compared to background areas). The visual lack of vegetation in the disturbed portion of the site, including the waste and rock piles, can most likely be attributed to steep slopes and the lack of organic matter and nutrients on waste and rock.

Three distinct habitat types were observed in the site area:

- Coniferous hillsides onsite
- Emergent wetland areas onsite surrounding Gold Gulch
- Evergreen shrubland offsite, but observed from the mine area

The coniferous hillsides had moderate east- and west-facing slopes with a dry, rocky open understory and a canopy co-dominated by Douglas fir (*Pseudotsuga menziesii*) and ponderosa pine (*Pinus ponderosa*). This area could be classified as a temperate or subpolar needle-leaved evergreen forest (I.A.8.N) based upon NVCS. The surrounding, moderately steep and dry, rocky hillsides adjacent to the site were co-dominated by the canopy species Douglas fir and ponderosa pine, and sub-dominated by Western juniper (*Juniperus occidentalis*). The mature conifers were approximately 100 ft tall with an average diameter at breast height (DBH) of 36 in. The understory was open with little vegetation and included the species yellow hawkweed (*Hieracium albertinum*), western meadow rue (*Thalictrum occidentale*), and sedge species (*Carex* spp.). Some downed trees and snags were observed in the coniferous forest.

The stream in Gold Gulch is intermittent and less than a foot wide in the areas where stream samples were collected. The areas immediately surrounding the intermittent stream were characterized as emergent wetlands with scattered Pacific willows (*Salix lasiandra*). Based upon the NVCS, these areas could be characterized as semi-permanently flooded temperate perennial forb vegetation (V.B.2.N.e). Further upstream along Gold Gulch south of the mine site, scattered evergreens and Pacific willow provided a more substantial riparian canopy to the stream. The wetland areas were dominated by the aquatic vegetation white water buttercup (*Ranunculus aquatilis*) and American speedwell (*Veronica Americana*); emergent vegetation included creeping spikerush (*Eleocharis palustris*) and various rush (*Juncus* spp.) and sedge species (*Carex* spp.). Other aquatic vegetation that was observed only in the large pond included duckweed (*Lemna minor*) and a water-starwort species (*Callitriche sp.*), which was not flowering at the time and therefore could not be identified to the species level. Both species are classified as obligate wetland vegetation.

Offsite of the mine area, directly to the north (across FS Road 600), a steeply-sloped evergreen shrubland (III.A.4.N.a) dominated by sagebrush (*Artemisia* sp.) and sub-dominated by kinnikinnick (*Arctostaphylos uva-ursi*) was observed.

Wildlife

The wetland vegetation and ponds surrounding Gold Gulch and the confluence with Trout Creek represent a unique habitat compared to the surrounding dry, arid regions. Many wildlife species, predominantly avian species, were observed at the site and in the vicinity of the mine, most likely taking advantage of the water resources at the site (see list in Appendix E).

Numerous least chipmunks (*Euatamius minimus*) and golden-mantled squirrels (*Citellus lateralis*) were observed at the site in the understory of the coniferous habitat. Mule deer (*Odocoileus hemoinus*) were observed both on and offsite. A coyote (*Canis latrans*) was observed offsite and the OSC reported observing a badger near the site. Nine species of bats are listed for Harney County, but only 6 of the 9 species might use mine sites for roosting. During the terrestrial surveys, no visual or olfactory evidence of bats was observed onsite or at the open (southern) adit. However, it is possible that the Idol City Mine site may provide habitat suitable for bat species.

Many avian species were observed during an early morning site reconnaissance, when little anthropogenic or other disturbing activities were taking place. Avian species commonly observed using the disturbed scrub vegetation of the site and adjacent conifers included brown creeper (*Certhia americana*), dark-eyed junco (*Junco hyemalis*), Clark's nutcracker (*Nucifraga columbiana*), black-capped chickadee (*Parus atricapillus*), black-headed grosbeak (*Pheucticus melanocephalus*), green-tailed and spotted towhees (*Pipilo chlorurus* and *P. maculatus*), red-breasted and white-breasted nuthatches (*Sitta canadensis and S. carolinensis*), red-naped sapsucker (*Sphyrapicus nuchalis*), and white-crowned sparrow (*Zonotrichia leucophrys*). Other common species included American goldfinch (*Carduelis tristis*), common raven (*Corvus corax*), Steller's jay (*Cyanocitta stelleri*), and American robin (*Turdus migratorius*). The OSC also reported observing several wild turkeys (*Meleagris gallapavo*) onsite one morning. A prairie falcon (*Falco mexicanus*) was observed flying over the site and not necessarily using the habitat. In the surrounding coniferous habitat 3 species of woodpeckers were observed, including pileated (*Dryocopus pileatus*), black-backed, and hairy woodpeckers (*Picoides arcticus* and *P. villosus*). Two of these are listed as state sensitive species:

- Pileated woodpecker ODFW Status of SV
- Black-backed woodpecker ODFW Status of SC

The dead snags and open understory of the coniferous forest provide good quality habitat for woodpecker species at the site and surrounding areas. During the water quality collection effort at the upstream sampling station, a large and unidentifiable hawk species, possibly a Northern goshawk, was observed using the wetland areas. The Northern goshawk has a federal status of SOC.

The physical disturbance of the mine site area appears to have affected the quality of habitat available to potential wildlife species; however, additional and undisturbed habitat is available in the areas immediately surrounding the mine site. A complete list of wildlife species observed at the site during the site reconnaissance is included in Appendix E.

3.3.2 Previous Investigations

Shallow soil and waste samples (approximately 4-6 in deep) were collected from waste rock piles at the site during performance of an APA in October 2002 (CES 2002). The samples were analyzed for metals content using a Niton Dual Source X-ray fluorescent unit and *in situ* field screening methods. Metals concentrations detected in 9 samples were compared to 2002 USEPA Region 9 PRGs for industrial soils. Arsenic and lead were detected at concentrations exceeding the PRGs in multiple samples. Specific sampling locations were not identified in the report. Samples with arsenic or lead concentrations exceeding the PRGs included the following:

Location	Constituent	Result (mg/kg)	PRG (mg/kg)	
Waste rock pile 1 (north of shaft)	Arsenic	305	1.6*	
	Lead	1,780	750	
Waste rock pile 3 (at shaft)	Arsenic	562	1.6*	
	Lead	1,630	750	
Waste rock pile 6 (west of shaft,	Arsenic	170	1.6*	
across Gold Gulch drainage)				
Waste rock pile 8 (east of	Arsenic	91	1.6*	
2 buildings near Trout Creek)				
Waste rock pile 9 (near Adit 1)	Arsenic	83	1.6*	
Waste rock pile 9 (near Adit 1)	Arsenic	488	1.6*	
Waste rock pile 10 (near Adit 4)	Arsenic	217	1.6*	

^{*} For cancer endpoint, the PRG for arsenic was 1.6 mg/kg; for noncancer endpoint it was 260 mg/kg. (These concentrations are revised annually.)

NOTE: PRG = Preliminary Remediation Goal. mg/kg = Milligrams per kilogram.

Based on their assessment, CES suggested that waste material may be impacting the Gold Gulch stream and Trout Creek, and recommended performance of an SI.

3.3.3 Analytical Results

The following soil, waste, and associated plant tissue samples were collected during the SI:

- Twelve surface soil/waste samples, including 1 background sample
- Five subsurface soil samples
- Four plant tissue samples: 3 co-located with onsite soil samples and 1 co-located with the background soil sample.

Sample locations are indicated on Figures 2 and 3. A soil sample log, including sample descriptions, is provided in appendix F.

Soil and Waste Samples

Samples labeled "TA" were collected from onsite soil in potentially impacted areas, and from soil piles suspected to be from placer mining or surface excavations. Samples labeled "WP" were collected from piles suspected to be waste rock from underground mining. Surface soil samples generally were collected from the 4 to 6 in. depth interval.

In general, soil samples were analyzed for pH, TAL metals, and cyanide. Approximately 25 percent of the soil samples were also analyzed for Synthetic Precipitation Leaching Procedure (SPLP) metals and Acid Base Accounting (ABA). Analytical results for soil and plant tissue samples are presented in Tables 4 and 5, respectively. ABA results are summarized in a table in Appendix G.

Criteria for comparing measured concentrations of metals in soils consisted of the following human health and ecological screening values:

- ODEQ (1998) Guidance for Ecological Risk Assessment, Level II Screening Values.
- USEPA Region 9 PRGs for Industrial Soils (http://www.epa.gov/region09/waste/sfund/prg/index.htm).
- USEPA (2000a) Generic Soil Screening Levels (SSLs), for protection of human health.
- USEPA (2000b) Ecological Soil Screening Levels (EcoSSLs).
- Oak Ridge National Laboratory PRGs for protection of plants, wildlife, or soil invertebrates, U.S. Department of Energy (Efroymson et al. 1997).

Analytical data were compared to the lowest available screening criteria (Table 4). Surface soil sample analytical results indicated the following:

- Soil pH measurements ranged from 2.7 to 8.5. Except for 1 sample, the pH of waste pile materials ranged from 2.7 to 4.2, while site soils and background ranged from 6.4 to 7.6.
- Metals exceeding one or more of the comparison criteria in the background soil sample include aluminum, antimony, arsenic, barium, beryllium, chromium, lead, manganese, mercury, selenium, thallium, vanadium, and zinc.
- In the onsite soil samples, the following additional metals exceeded one or more of the comparison criteria: cadmium (2 samples), cobalt (1 sample), copper (1 sample), and silver (2 samples).
- Sample WP-SSS-01, collected at 0.5 ft below ground surface from a waste pile on the west side of the gulch in the main working area, had the highest concentrations of many of the metals detected; some of these concentrations were significantly higher than in any of the other samples collected. Metals occurring at significantly elevated concentrations in this sample included antimony, arsenic, barium, cadmium, copper, lead, mercury, silver, thallium, and zinc. Lead in this sample was reported at a concentration of 25,300 mg/kg.

- Excluding sample WP-SSS-01, the following metals (detected at concentrations exceeding comparison criteria) were detected in one or more samples at concentrations significantly exceeding (greater than 3 times) background: arsenic (1 WP sample), barium (1 WP sample), cadmium (1 WP sample), lead (3 WP samples), mercury (3 TA and 8 WP samples), silver (2 WP samples), and zinc (1 WP sample).
- Elevated concentrations of several metals were detected in sample TA-SSS-19, including barium, lead, and mercury. This sample was collected from the wetland area at the toe of a large waste rock pile on the east side of the main working area (see Figure 2). These results, along with visual observations of soil discoloration in this area, indicate that waste material has eroded from the pile into the wetland area.
- Sample WP-SSS-21 was collected from a possible waste rock pile in the center of Gold Gulch, toward the south end of the site. Although most of the metals concentrations detected in this sample did not exceed those in the background sample, this sample had the highest arsenic concentration (961 mg/kg) detected during the SI. This sample had a pH of 8.5.
- In locations where both shallow and deeper soil samples were collected from waste piles, there was no distinct correlation between metals concentration and depth.

Waste pile volumes were calculated for 15 waste rock piles at the site. Individual pile locations and volumes are provided in Appendix H. The total volume for the 15 waste piles identified is approximately 2,000 cubic yards.

Plant Tissue Samples

Plant tissue specimens were collected and analyzed for cyanide and TAL metals. Targeted plant species included ecologically important forage species for wildlife that could be used in a food chain analysis of ecological risks, if required in the future. The collected plant species at the Idol City Mine site was squaw current; in addition to being considered important browse material for wildlife, the plants were fruiting at the time of sampling. Squaw currant also was one of the few plant species that was repeatedly found growing on the waste and rock piles and also in the adjacent undisturbed areas, although some onsite examples exhibited signs of vegetative stress. Plant tissue samples were co-located with soil samples and were collected from 4 locations:

- A background, or reference, location on the hillside south of the mine area (BG-PLT-08)
- An onsite waste rock pile (WP-PLT-09)
- Onsite soil in the main working area (TA-PLT-10)
- Downgradient of the mine, adjacent to the downstream sampling location (TA-PLT-11).

A summary of the plant tissue analytical data is provided in Table 5. No comparison criteria are available for plant tissue. For most metals, concentrations detected in the 4 samples did not vary significantly. In sample WP-PLT-09, collected from the waste rock pile, manganese was detected at a concentration roughly an order of magnitude higher than in the other samples, while barium was detected at a concentration an order of magnitude less than in the other samples. Lead was also detected in this sample at a slightly higher concentration than in the other samples.

3.3.4 Soil Exposure Pathway Summary

There is evidence of releases of site-related contaminants to soil at the Idol City Mine site. A number of metals were detected in onsite surface soil and waste rock pile samples at concentrations exceeding comparison criteria. Although the background surface soil sample also exceeded comparison criteria for a number of metals, the following metals were detected at concentrations exceeding the comparison criteria and at elevated concentrations compared to background; aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, selenium, silver, thallium, vanadium, and zinc.

Erosion of fine-grained waste material was evident at the site adjacent to the waste piles along the wetland area in the northern portion of the site. These eroded waste materials likely enter the Gold Gulch stream during periods of high rainfall and snowmelt.

Two listed avian species, the pileated woodpecker and the black-backed woodpecker, were observed on or immediately adjacent to the site.

3.4 AIR

3.4.1 Targets

The target distance for air has been defined as both 1 and 4 mi radii from the site. There are no residences within 1 mi of the site. It is estimated that less than 10 people live within a 4-mi radius. The shortest distance between a regularly occupied structure and the site is estimated to be approximately 3 mi. Sensitive environments, including wetlands, which are located within 4 mi of the site are indicated in Section 3.3.1.

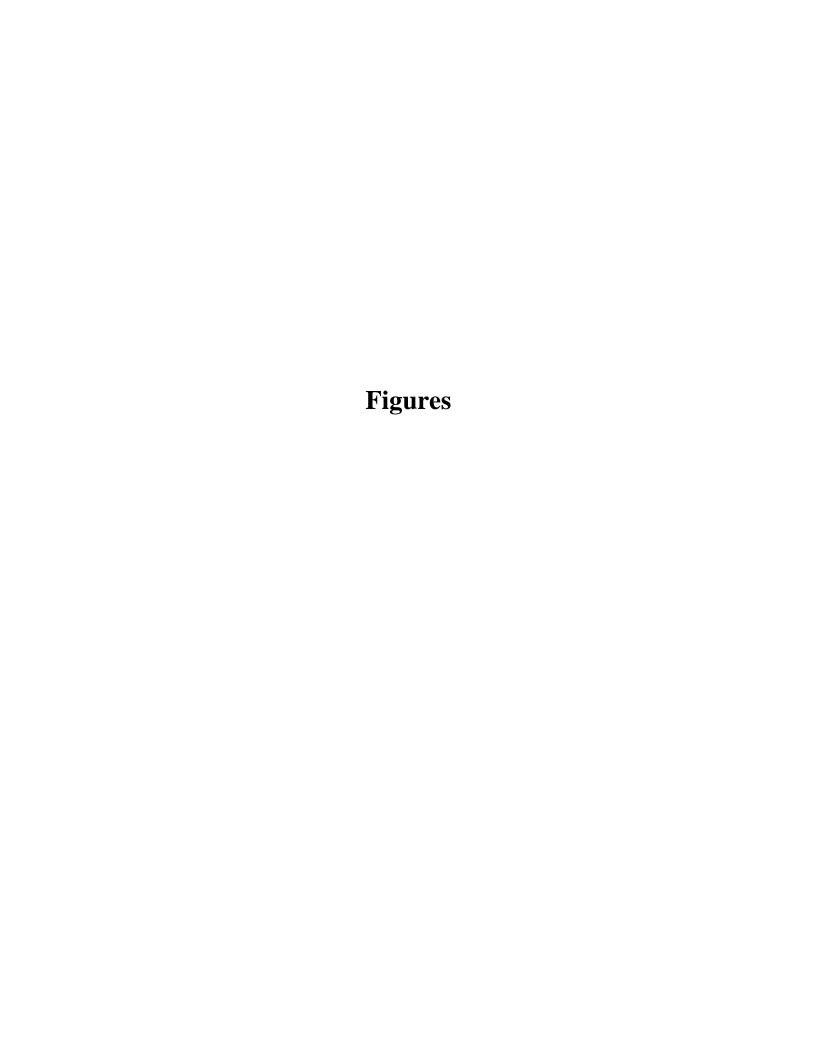
3.4.2 Air Pathway Summary

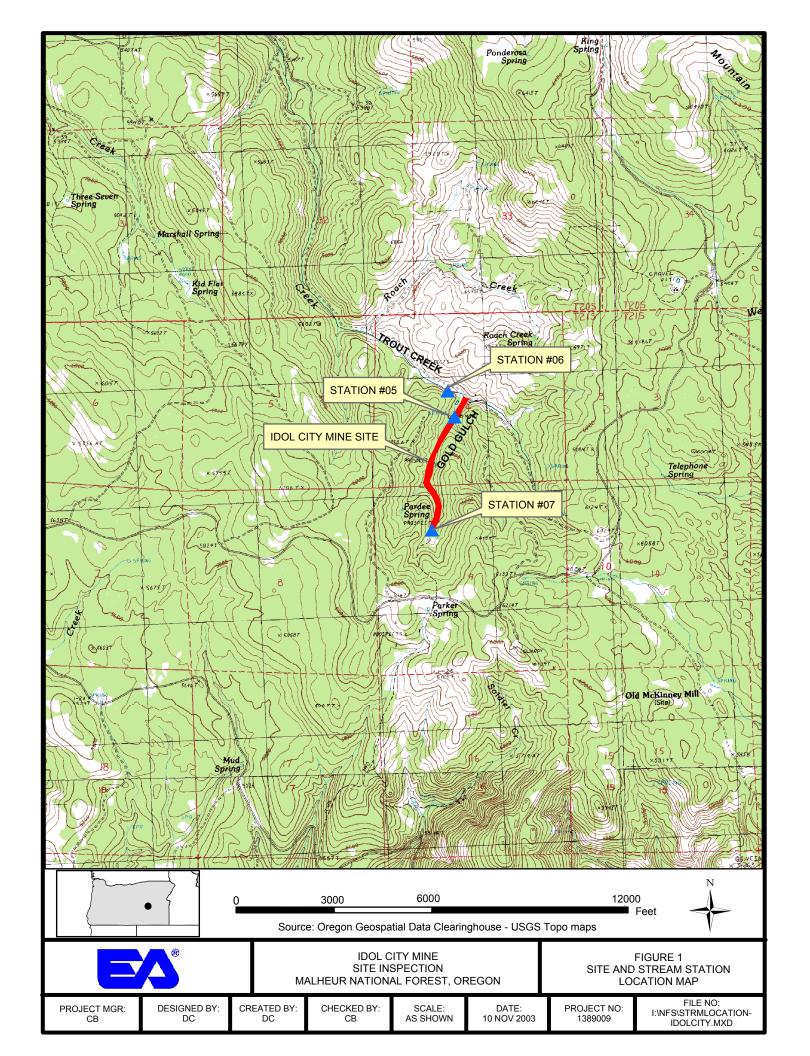
Air samples were not collected as part of this SI. The most likely current air exposure pathway is via inhalation of particulate matter. Arsenic was detected in 2 shallow soil samples (WP-SSS-01 and WP-SSS-21) at concentrations exceeding the USEPA soil screening level for inhalation of particulates (750 mg/kg); therefore, the potential exposure pathway is considered complete. Because the air pathway is directly related to the soil exposure pathway, addressing and/or eliminating contaminated soils at the site would likely render the air pathway incomplete.

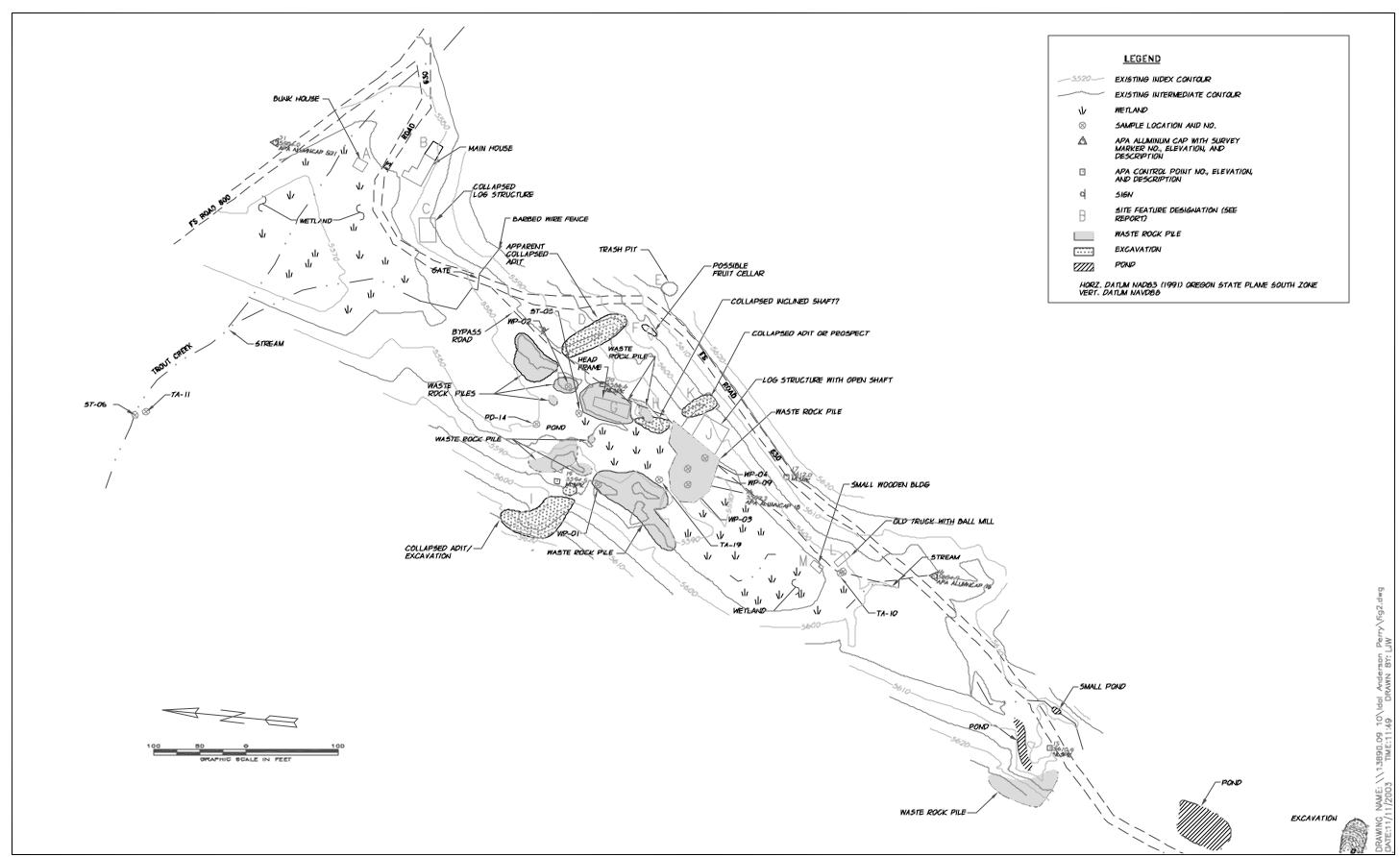
4. SUMMARY AND CONCLUSIONS

The following site characteristics have been identified, based on site observations and the results of field and laboratory analyses:

- The site includes numerous piles of waste rock (from underground mining), placer tailings, and excavated overburden. While the color and texture of the materials helps in determining the source for some piles, the source of others is not clear. Not all piles at the site were sampled. Elevated metals concentrations were detected in many of the materials sampled, but the highest concentrations tended to occur in materials that appeared to be from underground mining.
- No evidence of AMD was found in surface water; however, materials in the waste rock piles from underground mining had soil pHs in the range of 3-4. Unimpacted areas and shallow soils had pH measurements ranging from 6 to 8.
- There is evidence of a release of hazardous substances to soil at the site. A number of metals were detected in surface soil and waste rock pile samples at concentrations exceeding comparison criteria. Although a background surface soil sample also exceeded comparison criteria for a number of metals, the following were detected at concentrations exceeding the comparison criteria and at elevated concentrations compared to background: aluminum, antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, copper, lead, manganese, mercury, selenium, silver, thallium, vanadium, and zinc.
- There is evidence of a release of hazardous substances to surface water at the site. Erosion of
 fine-grained waste material was evident at the site, adjacent to waste rock piles. These eroded
 waste materials appear to enter the wetland areas and the Gold Gulch stream during periods of
 high rainfall and snowmelt.
- Elevated concentrations of several metals were detected in a sample of water discharging from the adit, including arsenic, calcium, iron, and manganese.
- Barium was detected at concentrations exceeding the lowest comparison criteria in all surface water samples, including the reference location. Additional metals detected at concentrations exceeding the criteria in surface water included arsenic, cadmium, lead, manganese, and zinc in the sample collected adjacent to the main mining area (Station 05).
- No fish species were observed in the Gold Gulch stream or in Trout Creek at the stream sampling stations. Because of their intermittent nature, habitat in these streams does not appear sufficient to support any type of fish species in the site area.
- Benthic habitat at the site is severely limited by the small size and intermittent nature of the streams. Because of this, the benthic macroinvertebrate community should not be used as an indicator of the mine's effects on the stream.
- Two listed amphibian species were observed in an onsite pond during the SI; Northern redlegged frog (Federal SOC and ODFW SV/SU status) and Oregon spotted frog (Federal C and ODFW SC status). Somewhat elevated concentrations of arsenic and manganese (above comparison criteria and the stream reference sample) were detected in surface water collected from this pond.


- Two listed avian species were observed onsite or in the immediately surrounding area: pileated woodpecker (ODFW SV status) and black-backed woodpecker (ODFW SC status). The physical disturbance of the mine site area appears to have reduced the quality of habitat available to certain wildlife species, but undisturbed, suitable habitat is available in the areas surrounding the mine site.
- Groundwater is not used for drinking water within the target area; therefore, the groundwater
 pathway appears to be incomplete. Any impacted shallow groundwater at the site is expected to
 be very localized in nature, and to present a risk to nearby surface water bodies, in the form of
 springs and seeps.
- The air pathway is considered complete, as arsenic was detected in 2 shallow soil samples at concentrations exceeding the USEPA soil screening level for inhalation of particulates. However, because the air pathway is directly related to the soil pathway, reducing or eliminating contaminated soils at the site would likely render the air pathway incomplete. Further assessment of the air pathway is not considered necessary, if the soil pathway is addressed.


Based on the information presented herein, EA recommends performance of an Engineering Evaluation/Cost Analysis (EE/CA) at the Idol City Mine site. As part of the EE/CA, a risk assessment should be performed to assess the human and ecological impacts, establish site removal cleanup standards, and evaluate remediation technologies.


5. REFERENCES

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. 2nd Ed. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Brooks, H.C. and Ramp, L. 1968. Gold and Silver in Oregon. State of Oregon Department of Geology and Mineral Industries, Bulletin 61.
- Brown, C.E. and Thayer, T.P. 1966. Geologic Map of the Canyon City Quadrangle, Northeastern Oregon. U.S. Geological Survey Miscellaneous Geological Investigation Map I-447.
- CES. 2002. Abbreviated Preliminary Assessment, Idol City Mine. Prepared for the U.S. Department of Agriculture, Forest Service. Cascade Earth Sciences. October.
- EA. 2003a. Work Plan for Site Inspections Malheur National Forest, Akers, Idol City, Princess, and Tempest Mine Sites. Prepared for U.S. Department of Agriculture, Forest Service. EA Engineering, Science, and Technology, Inc., Bellevue, Washington. February.
- EA. 2003b. Sampling and Analysis Plan for Site Inspections Malheur National Forest, Akers, Idol City, Princess, and Tempest Mine Sites. Prepared for U.S. Department of Agriculture, Forest Service. EA Engineering, Science, and Technology, Inc., Bellevue, Washington. February.
- EA. 2003c. Health and Safety Plan for Site Inspections Malheur National Forest, Akers, Idol City, Princess, and Tempest Mine Sites. Prepared for U.S. Department of Agriculture, Forest Service. EA Engineering, Science, and Technology, Inc., Bellevue, Washington. February.
- EA. 2003d. Standard Operating Procedures for Site Inspections Malheur National Forest, Akers, Idol City, Princess, and Tempest Mine Sties. Prepared for U.S. Department of Agriculture, Forest Service. EA Engineering, Science, and Technology, Inc., Bellevue, Washington. February.
- EA. 2003e. Standard Operating Procedures for Abandoned Mine Sites. Prepared for U.S. Department of Agriculture, Forest Service. EA Engineering, Science, and Technology, Inc., Bellevue, Washington. June.
- Efroymson, R.A., G.W. Suter, B.E. Sample, and D.S. Jones. 1997. Preliminary Remediation Goals for Ecological Endpoints. ES/ER/TM-162/R2. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory, Tennessee.
- Forest Service. 1968. Report of Mineral Examination: 2810 Mining Claims, Malheur National Forest, H.A. Martin. July 26.
- Forest Service. 1971. Supplemental Report of Mineral Examination; Job No. 280. Claimant: H.A. Martin; Request by claimant for a resampling of the inclined shaft. July 13.
- Forest Service. 2001a. Abandoned Mined Lands Work Group, Site Discovery Form: Idol City. U.S. Department of Agriculture, Forest Service. Malheur National Forest.
- Forest Service. 2001b. Abandoned Mine Location Record Malheur National Forest: Idol City. U.S. Department of Agriculture, Forest Service.

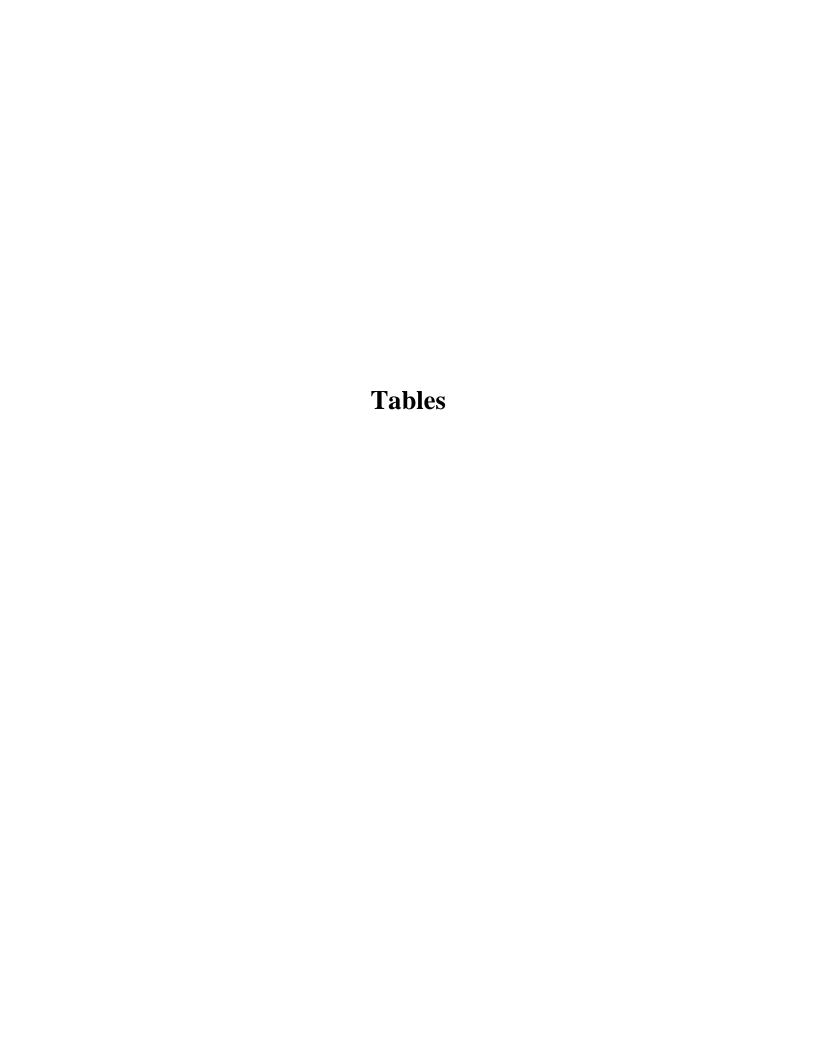

- Goff, G. 1982. Site examination for threatened and endangered plant species. Environmental Management 6(4).
- Hitchcock, C.L. and Cronquist, A. 1973. Flora of the Pacific Northwest. University of Washington Press. Seattle, Washington. 730 pp.
- Noranda. 1982. Proposed 1982 Operating Plan. Submitted by Noranda Exploration, Inc. to the Burns Ranger District, Malheur National Forest (MNF). (From MNF 2810 file.) June 2.
- NWI. 1994. 7.5-Minute Topographic Map for Devine Ridge North. National Wetland Inventory.
- ODEQ. 1998. Guidance for Ecological Risk Assessment: Levels I, II, III, IV. Final. Oregon Department of Environmental Quality, Portland, Oregon. April.
- ODEQ. 2001. Oregon Plan for Salmon and Watersheds Water Quality Monitoring Guide Book. Oregon Department of Environmental Quality.
- ONHIC. 2003. Correspondence from Cliff Alton, Conservation Information Assistant with the Oregon Natural Heritage Information Center. 18 July.
- ONHP. 2001. *Rare, Threatened and Endangered Plants and Animals of Oregon.* Oregon Natural Heritage Program, Portland, Oregon. 98 pp. pdf.
- Suter, G.W., and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. Prepared for U.S. Department of Energy. Oak Ridge National Laboratory, Tennessee. June.
- USEPA. 1997. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States. Volume 1: National Sediment Quality Survey. EPA 823-R-97-006. U.S. Environmental Protection Agency, Office of Science and Technology, Washington, DC. September.
- USEPA. 2000a. Soil Screening Guidance. User's Guide. EPA540/R-96/018. Technical background document, Appendix A. http://www.epa.gov/oerrpage/superfund/resources/soil/. Accessed in September 2003.
- USEPA. 2000b. Ecological Soil Screening Level Guidance. Draft. U.S. Environmental Protection Agency, Office of Emergency and Remedial Response. 10 July.
- USEPA. 2002. National Recommended Water Quality Criteria: 2002. EPA-822-R-02-047. U.S. Environmental Protection Agency, Office of Water, Washington DC. November.

TABLE 1 - SURFACE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 1 of 3

						Labora	tory G	eneral C	hemistr	y							Field Pa	rameters			
Sample ID	Date	LKALINITY, BICARBONATE, mg/L	LKALINITY, CARBONATE, mg/L	ALKALINITY, HYDROXIDE, mg/L	ONDUCTANCE, uS/cm	IARDNESS, mg/L	Н	REDOX POTENTIAL, mV	ULFATE, mg/L	USPENDED SOLIDS, TOTAL, mg/L	USPENDED SOLIDS, VOLATILE, mg/L	FOTAL ALKALINITY, mg/L	OTAL DISSOLVED SOLIDS, mg/L	TEMPERATURE, °C	DISSOLVED OXYGEN, mg/L	PECIFIC CONDUCTANCE, uS/cm	Н	URBIDITY, NTUs	LEDOX POTENTIAL, mV	VERAGE DEPTH, feet	URRENT VELOCITY, ft/sec
Adit	Dute	<	₹	∢	0	<u> </u>	ď	~	S	S	8		Ţ	Ţ		80	Ċ	I	~	₹	0
AD-SFW-12	07/22/03	341	<1	<1	1150	860	7.5	145	391	186	18.5	341	945	19.42	1.33	1019	6.85	161.3	-48.9	0.33	NM
Ponds																					
PD-SFW-13	07/22/03	145	<1	<1	403	460	7.6	162	69	22.8	<5	145	283	19.55	6.22	354	7.27	4.8	55.9	2 to 6	NA
PD-SFW-14	07/21/03	142	<1	<1	371	220	7.4	159	58.6	79.2	23.6	142	318	22.40	7.30	357	7.00	4.00	115	1	NA
Streams																					
ST-SFW-05 (at mine)	07/22/03	192	<1	<1	210	500	7.4	169	126	236	25.8	192	300	20.67	5.48	410	7.16	172.5*	129	0.17	NM
ST-SFW-06 (downstream)	07/21/03	254	<1	<1	451	272	7.4	160	18.1	19.8	<5	254	295	14.67	3.44	60	6.83	4.6	4.6	0.5	NM
ST-SFW-07 (upstream)	07/22/03	175	7.7	<1	400	216	8.2	158	43	8.4	<5	183	286	19.62	6.20	361	7.77	2.8	126.8	0.33	0.03
Comparison Criteria														_			_				
EPA-Ecological		NA	NA	NA	NA	>20	6.5-9	NA	NA	NA	NA	NA	NA	NA	8	NA	6.5-9	NA	NA	NA	NA
EPA-Human Health		NA	NA	NA	NA	NA	5-9	NA	NA	NA	NA	NA	250	NA	NA	NA	5-9	NA	NA	NA	NA
Oak Ridge PRG		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OR-Ecological		NA	NA	NA	NA	NA	6.5-9	NA	NA	NA	NA	NA	500	NA	6-11	NA	6.5-9	NA	NA	NA	NA
OR-Human Health		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

^{*}Stream was not flowing at time of sample collection; a small hole was created to sample for surface water and this created turbidity in the water column.

TABLE 1 CONTINUED - SURFACE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 2 of 3

							T	'AL Metals,	μg/L					
Sample ID	Date	ALUMINUM	ARSENIC	BARIUM	САВМІИМ	CALCIUM	COPPER	IRON	LEAD	MAGNESIUM	MANGANESE	POTASSIUM	Nobium	ZINC
Adit														
AD-SFW-12	07/22/03	32.5	41.7	63.5	< 0.6	175000	<2.4	2020	<1.3	53800	941	3040	14600	6.2
Ponds														
PD-SFW-13 (big pond)	07/22/03	36	14.3	78.9	< 0.6	53800	3.6	178	1.4	15600	139	3200	12400	16.4
PD-SFW-14 (small pond)	07/21/03	<23.6	<4.8	83.9	< 0.6	47000	6.2	214	<1.3	15300	29.4	5320	10400	41.8
Streams														
ST-SFW-05 (at mine)	07/22/03	26.4	8.3	113	1.2	64500	3.5	87	4.5	16500	100	3950	9900	162
ST-SFW-06 (downstream)	07/21/03	<23.6	<4.8	157	< 0.6	72100	3.6	73.5	<1.3	17500	< 0.7	3120	7630	13.4
ST-SFW-07 (upstream)	07/22/03	<23.6	<4.8	122	< 0.6	62300	<2.4	55.6	<1.3	14800	< 0.7	2950	10300	4.4
Comparison Criteria														
EPA Ecological		87	150	4	1.4 - 3.7	NA	22.9 - 75.1	1000	1.6 - 6.5	NA	120	NA	NA	196.7 - 639.1
EPA Human Health		NA	0.018	1000	NA	NA	1300	300	NA	NA	50	NA	NA	7400
Oak Ridge PRG		87	NA	4	1.1	NA	12	1000	3.2	NA	120	NA	NA	110
OR Ecological		87	NA	4	1.6 - 4.5	116000	22.9 - 75.1	1000	2.3 - 13.6	82000	120	53000	680000	199.5 - 648.2
OR Human Health		NA	0.022	1000	10	NA	NA	300	50	NA	50	NA	NA	NA

TABLE 1 CONTINUED - SURFACE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 3 of 3

Notes

- Bold, shaded results indicate concentrations above the lowest applicable comparison criterion.
- Cyanide (total) was analyzed for but not detected in any sample.
- All alkalinity was contributed by bicarbonate and carbonate; hydroxide alkalinity was not detected in any samples.
- The following dissolved metals were analyzed for but not detected in any sample: antimony, beryllium, chromium, cobalt, mercury, nickel, selenium, silver, thallium, and vanadium.
- Hardness-based criteria for cadmium, chromium III, copper, lead, nickel, silver, and zinc were calculated for each sample. The range of calculated criteria is indicated.

< = Analyte was analyzed for but not detected.</p>

NA = Not available.

NM = Not measurable (flow).

Units:

°C = Degrees celcius

ft/sec = Feet per second

mg/L = Milligrams per liter

uS/cm = Microsiemens per centimeter

mV = Millivolts

ug/L = Micrograms per liter

NTU = Nephelometric turbidity units

Comparison Criteria

Oregon Ecological - Criteria are the lowest of:

- ODEQ Water Quality Criteria, Protection of Aquatic Life, Fresh Chronic Criteria (OAR 340-041-001), or
- ODEQ (1998b) Guidance for Ecological Risk Assessment, Level II Screening Values for surface water.

EPA Ecological - Criteria are the lowest of:

- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms, chronic; hardness dependent values were calculated for each sample, or
- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms, Tier II secondary chronic values calculated by Oak RidgeNational Laboratory (Suter & Tsao 1996).

Oak Ridge PRGs - Oak Ridge National Laboratory Preliminary Remediation Goals (Efroymson et al 1997c).

Oregon Human Health - ODEQ Water Quality Criteria, Protection of Human Health, Water and Fish Ingestion (OAR-340-041-001).

EPA Human Health - USEPA (2002) recommended ambient water quality criteria for protection of human consumption of fish.

Hardness dependent values were calculated for each sample; the range of values is indicated.

TABLE 2 - PORE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 1 of 3

]	Laborat	tory Gei	neral Cl	nemistry	y				F	ield Para	ameters		
Sample ID	Date	ALKALINITY, BICARBONATE, mg/L	ALKALINITY, CARBONATE, mg/L	ALKALINITY, HYDROXIDE, mg/L	CONDUCTANCE, uS/cm	HARDNESS, mg/L	pH, Std. Units	REDOX POTENTIAL, mV	SULFATE, mg/L	FOTAL ALKALINITY, mg/L	FOTAL DISSOLVED SOLIDS, mg/L	TEMPERATURE, °C	DISSOLVED OXYGEN, mg/L	SPECIFIC CONDUCTANCE, uS/cm	pH, std. Units	TURBIDITY, NTU	REDOX POTENTIAL, mV
Streams																	
ST-PW-05 (at mine)	07/22/03	186	<1	<1	454	580	7.3	170	58.8	186	312	16.69	6.22	204	7.23	150.0*	135.2
ST-PW-06 (downstream)	07/21/03	232	<1	<1	423	264	7.2	158	19.1	232	281	15.83	5.53	394	6.79	5.9	-9.0
ST-PW-07 (upstream)	07/22/03	177	5.4	<1	399	216	8	157	44.9	182	275	21.54	5.63	367	7.58	82	121.5
Comparison Criteria																	
EPA-Ecological		NA	NA	NA	NA	20000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oak Ridge PRG		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OR-Ecological		NA	NA	NA	NA	NA	NA	NA	NA	NA	500	NA	NA	NA	NA	NA	NA

^{*}Stream was not flowing at time of sample collection; a small hole was created to sample for surface water and this created turbidity in the water column.

TABLE 2 CONTINUED - PORE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 2 of 3

							TA	L Metals, μ	ıg/L					
Sample ID	Date	ALUMINUM	ARSENIC	BARIUM	САВМІИМ	CALCIUM	COPPER	RON	LEAD	MAGNESIUM	MANGANESE	POTASSIUM	MNIGOS	ZINC
Streams														
ST-PW-05 (at mine)	07/22/03	113	8.9	108	1.6	64100	5.2	415	62.5	16600	47.7	3570	9770	240
ST-PW-06 (downstream)	07/21/03	38.6	6.3	142	< 0.6	67800	2.6	1820	<1.3	16400	456	3560	8250	12.9
ST-PW-07 (upstream)	07/22/03	30.9	<4.8	125	< 0.6	62100	<2.4	65.6	1.5	14700	29.9	2940	10200	11.6
Comparison Criteria														
EPA-Ecological		87	150	4	1.4 - 2.8	NA	23.4 - 53.7	1000	1.6 - 4.4	NA	120	NA	NA	201.3 - 457.7
Oak Ridge PRG		87	NA	4	1.1	NA	12	1000	3.2	NA	120	NA	NA	110
OR-Ecological		87	NA	4	1.6 - 3.4	116000	23.4 - 53.7	1000	2.4 - 8.3	82000	120	53000	680000	204.2 - 464.2

TABLE 2 CONTINUED - PORE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 3 of 3

Notes

- Bold, shaded results indicate concentrations above the lowest applicable comparison criterion.
- Cyanide (total) was analyzed for but not detected in any sample.
- All alkalinity was contributed by bicarbonate and carbonate; hydroxide was not detected in any samples.
- The following dissolved metals were analyzed for but not detected in any sample: antimony, beryllium, chromium, cobalt, mercury, nickel, selemium, silver, thallium, and vanadium.
- Hardness-based criteria for cadmium, chromium III, copper, lead, nickel, silver, and zinc were calculated for each sample. The range of calculated criteria is indicated.

< = Analyte was analyzed for but not detected.</p>

NA = Not available. NM = Not measured.

Units:

°C = Degrees celcius

ft/sec = Feet per second

mg/L = Milligrams per liter

uS/cm = Microsiemens per cubic centimeter

mV = Millivolts

ug/L = Micrograms per liter

NTU = Nephelometric turbidity units

Comparison Criteria

Oregon Ecological - Criteria are the lowest of:

- ODEQ Water Quality Criteria, Protection of Aquatic Life, Fresh Chronic Criteria (OAR 340-041-001), or
- ODEQ (1998b) Guidance for Ecological Risk Assessment, Level II Screening Values for surface water.

EPA Ecological - Criteria are the lowest of:

- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms, chronic; hardness dependent
- USEPA (2002) recommended ambient water quality criteria for freshwater aquatic organisms, Tier II secondary chronic

Oak Ridge PRGs - Oak Ridge National Laboratory Preliminary Remediation Goals (Efroymson et al 1997c).

Oregon Human Health - ODEO Water Quality Criteria, Protection of Human Health, Water and Fish Ingestion (OAR-340-041-001).

EPA Human Health - USEPA (2002) recommended ambient water quality criteria for protection of human consumption of fish.

Hardness dependent values were calculated for each sample.

TABLE 3 - SEDIMENT ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 1 of 3

								TA	L Metals,	mg/kg								
Sample ID	Date	ALUMINUM	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	САРМІШМ	CALCIUM	CHROMIUM, TOTAL	COBALT	COPPER	IRON	LEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM
Adits																		
AD-PSD-12	07/22/03	9380	10	510	243	0.48	< 0.1	16100	3.6	14	22	63500	12	1480	2570	0.15	7.3	1680
Ponds																		
PD-PSD-13 (big pond)	07/22/03	8020	2.3	68.8	226	0.47	0.15	3560	4.2	7.5	27.3	17300	14.8	1630	320	0.23	11.4	1410
PD-SSD-14 (small pond)	07/22/03	25400	7.5	118	618	1.3	11.9	10700	11.2	15.1	84.8	46300	486	2990	577	4.1	26.5	3530
Streams																		
ST-SSD-05 (at mine)	07/22/03	18000	4.6	142	422	1.1	6.3	2680	3.2	20.4	83.1	42100	1190	779	747	2.5	20.3	1540
ST-SSD-06 (downstream)	07/22/03	11200	1.5	20.3	180	0.48	0.42	3380	6.3	10	19.8	25700	22	5730	540	0.39	13.1	2360
ST-PSD-07 (upstream)	07/22/03	10600	2.7	45.7	221	0.62	< 0.089	3170	6.3	9	23.3	28400	10.3	1890	533	0.23	8.5	1870
Comparison Criteria																		
Effects Range Low (ER-L)		NA	NA	8.2	NA	NA	1.2	NA	81	NA	34	NA	47	NA	NA	0.15	21	NA
Effects Range Medium (ER-M	()	NA	NA	70	NA	NA	9.6	NA	370	NA	270	NA	218	NA	NA	0.71	51.6	NA
OR Risk Assess Level II Value	es	NA	3	NA	NA	NA	0.6	NA	37	NA	36	NA	35	NA	1100	0.2	18	NA
Probable Effects Level (PEL)		NA	NA	41.6	NA	NA	4.21	NA	160	NA	108	NA	112	NA	NA	0.696	42.8	NA
Threshold Effects Level (TEL)		NA	NA	7.24	NA	NA	0.676	NA	52.3	NA	18.7	NA	30.2	NA	NA	0.13	15.9	NA

TABLE 3 CONTINUED - SEDIMENT ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 2 of 3

			TAL M	etals, mg	g/kg					Grai	n Size			
Sample ID	Date	SELENIUM	SILVER	SODIUM	THALLIUM	VANADIUM	ZINC	GRAVEL %	SAND, COARSE %	SAND, FINE %	SAND, MEDIUM %	% ІПЅ	% XVTO	TOTAL ORGANIC CARBON, mg/kg
Adit														
AD-PSD-12	07/22/03	3.2	< 0.37	202	< 0.96	20.8	76.3	33.5	14.2	14.2	17.3	12	8.8	18100
Ponds														
PD-PSD-13	07/22/03	0.9	< 0.33	193	< 0.87	16.7	60.1	21	14.1	18.1	20.1	12.2	14.5	15400
PD-SSD-14	07/22/03	2.5	1.3	351	<1.4	39.6	2050	0	0	5.6	0.7	35.1	58.6	42200
Streams														
ST-SSD-05 (at mine)	07/22/03	2.1	1.5	198	0.92	10.8	1660	42.8	16.5	10.3	18.4	6	6.1	12200
ST-SSD-06 (downstream)	07/22/03	1.2	< 0.27	124	< 0.69	27.5	186	41.9	20.7	4.7	21.6	8	3.1	2060
ST-PSD-07 (upstream)	07/22/03	1.5	< 0.33	227	< 0.85	28.7	77.5	32	16.4	17.5	22.6	6.1	5.4	12100
Comparison Criteria														
ER-L		NA	1	NA	NA	NA	150	NA	NA	NA	NA	NA	NA	NA
ER-M		NA	3.7	NA	NA	NA	410	NA	NA	NA	NA	NA	NA	NA
OR		NA	4.5	NA	NA	NA	123	NA	NA	NA	NA	NA	NA	NA
PEL		NA	1.77	NA	NA	NA	271	NA	NA	NA	NA	NA	NA	NA
TEL		NA	0.733	NA	NA	NA	124	NA	NA	NA	NA	NA	NA	NA

TABLE 3 CONTINUED - SEDIMENT ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 3 of 3

Notes

Bold, shaded results indicate concentrations above the lowest applicable comparison criterion.

Cyanide (total) was analyzed for but not detected in any sample.

< = Analyte was analyzed for but not detected.</p>

NA = Not available.

Units:

mg/kg = Milligrams per kilogram ug/L = Micrograms per liter

Comparison Criteria

- Threshold Effects Level (TEL) and Probable Effects Level (PEL) from USEPA National Sediment Quality Survey,

Screening Values for Chemicals Evaluated, http://www.epa.gov/waterscience/cs/vol1/appdx_d.pdf.

- Effects Range-Low (ER-L) and Effects Range-Medium (ER-M), National Oceanic and Atmospheric Administration (NOAA),

from USEPA (1997) National Sediment Quality Survey, Screening Values for Chemicals Evaluated.

- ODEQ (1998) Guidance for Ecological Risk Assessment, Level II Screening Values for freshwater sediment

(there was no criterion for total arsenic; therefore, the most conservative criterion, for arsenic 3, was used).

Oak Ridge National Laboratory values are not included; they are compiled from TEL and ER-L values, and USEPA Assessment and Remediation of Contaminated Sediment (ARCS) program values which exceed TELs.

TABLE 4 - SOIL ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 1 of 2

														TAL	Metals.	mg/kg										
	Sample	Sample		ALUMINUM	NTIMONY	RSENIC	ARIUM	SERYLLIUM	АРМІСМ	ALCIUM	CHROMIUM, TOTAL	COBALT	COPPER	RON	EAD	AGNESIUM	IANGANESE	TERCURY	VICKEL	OTASSIUM	ELENIUM	пуек	Оргим	THALLIUM	ANADIUM	ZINC
Sample Id Background	Depth	Date	pН	Ą	₹	∀	B	B	ರ	Ü	Ü	Ŋ	Ŋ	=		Σ	Σ	Σ	Z	<u>ā</u>	<u> </u>	S	Š	T	>	
BG-SSS-08	0.5	07/22/03	6.7	13600	8	107	424	0.64	< 0.032	4010	6.3	11	27.4	32400	17.2	1250	1410	0.1	11.5	2880	2	0.21	393	3.5	30.9	102
Test Area																										
TA-SSS-10	0.5	07/22/03	6.6	11100	1.8	26.2	358	0.55	< 0.031	3180	6.1	9.2	25.9	26500	35.6	1850	701	0.48	11	2650	1.6	0.12	302	2	23.9	78.2
TA-SSS-11	0.5	07/22/03	7	13700	1.8	44.9	299	0.69	< 0.029	4770	9.5	12.8	31.9	32600	12.7	3200	719	0.22	16.7	2300	1.7	0.11	219	2.5	34.3	74.8
TA-SSS-19	0.3	07/22/03	7	13800	2.9	87.3	818	0.85	< 0.042	6640	7.8	15.2	36.4	45900	30.7	2370	740	0.42	17.3	2530	2.5	0.19	248	3.3	32.3	264
TA-SSS-20	0.5	07/22/03	6.4	15700	1.7	39.8	330	0.68	< 0.03	3430	10.7	21.5	43.4	36600	12.4	3210	1450	0.06	26.8	2410	2	0.2	297	2.9	35.8	104
TA-SSS-23	0.5	07/23/03	7.6	13000	1.4	198	716	0.51	< 0.056	3140	7.3	11.6	37.5	23900	27.5	1860	557	0.15	14.8	1590	< 0.32	< 0.21	63	< 0.53	27.2	54.5
TA-SUS-22	1.0	07/23/03	7	5290	2.7	68.1	820	0.61	< 0.032	4760	3.5	12.5	18.8	38800	13	809	1010	0.35	9.9	2330	2.3	< 0.096	146	3.3	24.4	91
Waste Pile												,											•			
WP-SSS-01	0.5	07/22/03	3.4	2590	24.6	847	2060	< 0.021	27.1	992	1.2	1.9	167	19900	25300	80.2	74.3	103	2.3	2270	2.5	45	<225	14.5	5.4	3510
WP-SSS-02	0.5	07/21/03	2.8	2710	11.6	114	1770	0.15	0.96	3540	0.59	1.3	17.3	17100	1360	255	88.6	1.7	1.3	1850	0.56	2.4	167	0.96	5.3	218
WP-SSS-03	0.5	07/21/03	3.6	2270	1.7	43.7	533	0.21	<0.064	17200	0.46	3.6	13.1	25600	46.6	254	201	0.46	2.2	1930	0.81	<0.23	130	0.87	5.6	45.1
WP-SSS-09 WP-SSS-17	0.5	07/21/03	3.2	1920 2050	2.3	43.8	573 590	0.11	<0.029	8400	1.8	4.1	26 24.7	33900 17900	21.1	294	115 44.5	0.28	4.4	2100	2.1	0.095 <0.093	148	1.9	5.6 8.4	32.1
WP-SSS-17 WP-SSS-21	0.5	07/22/03	3.7 8.5	3140	4.1 6.5	137 961	26.1	0.061	< 0.031	671 44700	1.1 0.81	7.4	23.6	44700	10.9	214 14300	2740	1	5.3	1260 1730	1.8 <0.32		116	0.83	15.2	87.7
WP-SSS-21 WP-SUS-02	0.5 3.5	07/22/03	4.2	10200	1.9	49.5	438	0.5	<0.057	3000	5.1	13.1	33.3	31700	11.5 102	1780	1490	0,37	16.9	2050	<0.32	<0.21	61.4 109	<0.54	24.7	1130
WP-SUS-02	3.5	07/21/03	3.1	1740	2.3	37.3	361	0.042	<0.03	24600	2.3	2.6	10.5	42300	11.5	292	53.5	0.37	3	1760	2.8	< 0.089	181	2.2	10.1	30.5
WP-SUS-04	1.0	07/21/03	2.7	1180	1.7	42.2	391	< 0.042	0.74	1870	0.29	0.23	3.7	3690	452	94.4	19.8	3.3	<0.19	1010	0.36	1.7	52.9	< 0.27	0.98	83.1
WP-SUS-18	5.5	07/22/03	3.4	4020	2.5	151	178	0.019	< 0.031	4400	1.4	2.9	13.7	20400	21.8	376	84.3	1.3	2.2	2470	2.9	0.19	348	2	15.4	25.7
Comparison C	riteria																									
EPA Industrial	PRG			100000	410	1.6	67000	1900	450	NA	450	1900	41000	100000	750	NA	19000	310	20000	NA	5100	5100	NA	67	7200	100000
EPA Ecologica	1			NA	21m	37p	NA	NA	29p	NA	5p	32b	61i	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	120i
EPA Human He	ealth			NA	31	0.4	5500	0.1	78	NA	270ip	NA	NA	NA	400	NA	NA	NA	1600	NA	390	390	NA	NA	550	23000
Oak Ridge				NA	5p	9.9p,w	283w	10p	4p,w	NA	0.4s	20p	60s	NA	40.5w	NA	NA	0.00051w	30p	NA	0.21w	2p	NA	1p	2p	8.5w
OR Ecological				50p	5p	8p	85b	10p	4p	NA	NA	20p	50i	NA	16b	NA	100	0.1i	30p	NA	1p	2p	NA	1m,p	2p	50p

TABLE 4 CONTINUED - SOIL ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 2 of 2

										S	PLP M	letals, m	ıg/kg								
Sample No.	Sample Depth	Sample Date	ALUMINUM	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	САВМІИМ	CALCIUM	CHROMIUM, TOTAL	COBALT	COPPER	RON	LEAD	MAGNESIUM	MANGANESE	NICKEL	POTASSIUM	SODIUM	VANADIUM	ZINC
Background																					
BG-SSS-08	0.5	07/22/03	3490	7.2	20.2	47.3	< 0.2	< 0.6	2270	1.8	<2	5	2660	1.8	406	87.8	3	2500	8580	4.7	24.5
Waste Pile																					
WP-SSS-03	0.5	07/21/03	2990	<4.7	<4.8	32.6	1.2	2.9	585000	<1.4	4.6	22.4	<33.3	5	5750	1100	7.3	911	8380	<2	367
WP-SUS-03	3.5	07/21/03	3620	<4.7	<4.8	30.8	0.71	1.6	595000	<1.4	6.9	25.5	1130	15.4	6160	797	7.8	986	8470	<2	244
WP-SUS-18	5.5	07/22/03	2760	<4.7	<4.8	60.6	0.65	0.8	213000	<1.4	9.8	29.9	284	2.1	3410	980	10.3	2240	24200	<2	150

Notes

Bold, shaded results indicate concentrations above the lowest applicable comparison criterion.

Cyanide (total) was analyzed for but not detected in any sample.

The following metals were analyzed for but not detected in the SPLP analyses: mercury, selenium, silver, and thallium.

= Analyte was analyzed for but not detected.

NA = Not available.

Units:

mg/kg = Milligrams per kilogram
ug/kg = Micrograms per kilogram
ug/L = Micrograms per liter

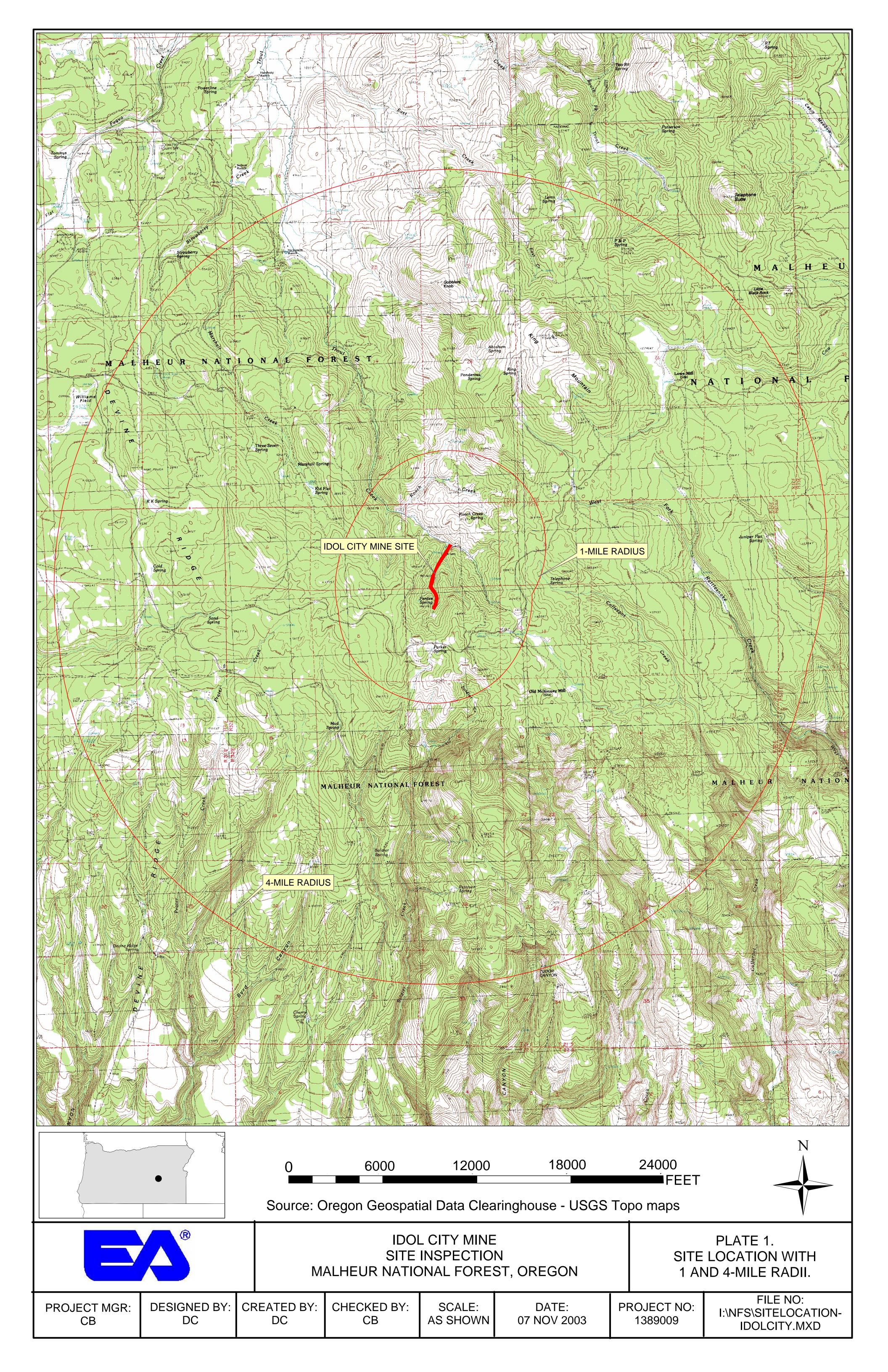
Comparison Criteria

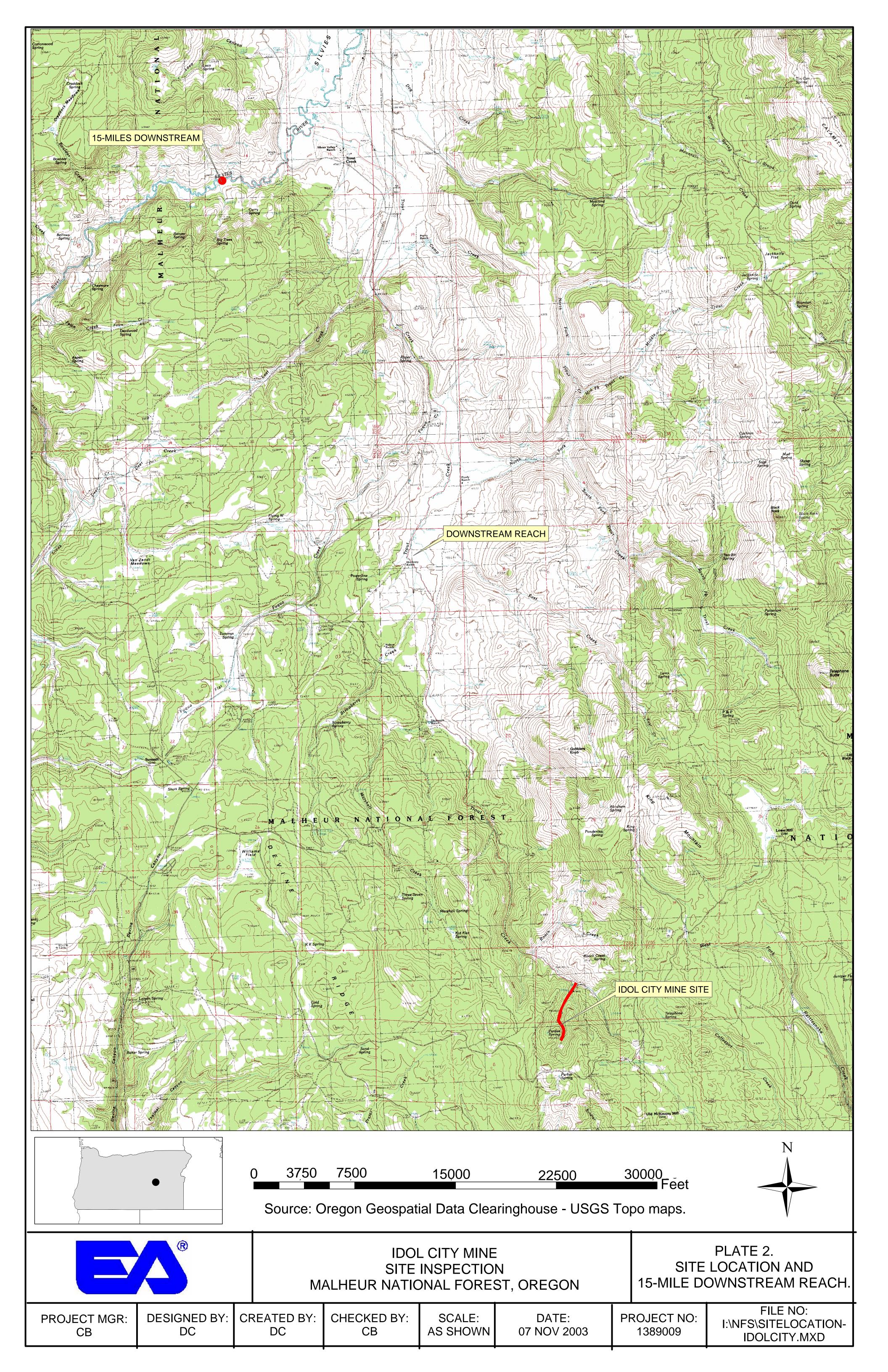
- OR Ecological ODEQ (1998) Guidance for Ecological Risk Assessment, Level II Screening Values lowest criteria for bird (b), plant (p), invertebrate (i), and Mammal (m).
- EPA Ecological EPA (2000b) Ecological Soil Screening Levels Lowest Criteria Indicators for bird (b), plant (p), invertebrate (I), and mammal (m).
- Oak Ridge National Laboratory, US DOE (Efroymson et al 1997), Preliminary Remediation Goals (PRGs) for protection of plants (p), wildlife (w), or soil invertebrates (s).
- EPA Human Heath Critera Generic Soil Screening Levels (SSLs) for Protection of Human Heath EPA (2000a). SSL is for ingestion unless indicated as inhalation of particulates by "ip".
- EPA Region 9 PRGS for industrial soil (http://www.epa.gov/region09/waste/sfund/prg/index.htm).

TABLE 5 - PLANT TISSUE ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

page 1 of 1

								TA	L Meta	ıls, mg/k	g						
SAMPLE NO.	SAMPLE DATE	ALUMINUM	ANTIMONY	BARIUM	CALCIUM	CHROMIUM, TOTAL	COPPER	RON	LEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SODIUM	ZINC
Background																	
BG-PLT-08	07/22/03	41.3	< 0.47	70.1	6930	0.18	1.6	47.8	0.22	991	22.4	0.029	< 0.21	5740	0.42	89.7	7.5
Test Area																	
TA-PLT-10	07/22/03	66.7	< 0.45	72.3	7470	0.18	1.9	68.2	0.4	1100	50.1	0.021	< 0.2	5870	0.48	65.7	11.7
TA-PLT-11	07/22/03	56.4	< 0.43	23.1	5150	0.15	1.3	65.3	0.29	827	23.1	0.023	< 0.19	5570	< 0.31	54.5	8.6
Waste Pile																	·
WP-PLT-09	07/22/03	74	< 0.47	2.6	5950	0.35	1.6	201	0.88	1680	321	< 0.016	0.26	4390	0.46	85.5	11


Notes


The following metals also were analyzed for but not detected in any sample: antimony, arsenic, beryllium, cadmium, cobalt, cyanide, silver, thallium, and vanadium.

< = analyte was analyzed for but not detected.

mg/kg = milligrams per kilogram

Appendix A Deviations from the Project Plans

DEVIATIONS FROM THE PROJECT PLANS

Planned Activity	Actual Activity	Reason for Deviation
Drill and sample soil borings.	Subsurface soil samples were collected using a hand auger.	Use of a drilling rig was eliminated due to site access and fire danger restrictions.
Collect soil samples from 2 soil borings within and 2 downgradient of tailings/waste rock piles.	Collected soil samples from 1 downgradient location and an additional 5 locations within various waste piles.	Numerous waste piles were present at the site and additional sampling was performed to evaluate them.
Collect surface water and sediment samples at ponds #3 and #4.	No samples collected.	More than 4 ponds were present at the site. Samples were collected from 2 representative ponds.
None.	Additional sediment sample was collected at the open adit (Station 12).	Sediment was available. Also, this change was made to be more consistent with work being done for other mine SIs.
Collect benthic samples at riffles and pools using kick-net procedure.	One benthic sample was collected at Stations 05, 06, and 07.	No defined riffle or pool habitat was observed in the stream at these stations. Benthos were collected at Stations 05 and 07 by hand-picking organisms from rocks/sticks; the kick-net procedure was not used. Benthos were collected at Station 06 using two kick-net replications in the available habitat due to the small size of the stream.
None.	Additional benthic sample collected at the big pond (Station 13).	High-quality habitat was observed at this station. An additional sample was collected by using the kick-net in the available sediment and aquatic vegetation.
Include TSS and total TAL metals analyses for pore water samples.	These 2 analyses were not included for pore water samples.	This change was made to be more consistent with work being done for other mine SIs; it was made with concurrence from the On-Scene Coordinator (OSC).
Analyze plant tissue samples for TAL metals only.	Cyanide analyses was added for plant tissue samples.	This change was made to be more consistent with work being done for other mine SIs; it was made with concurrence from the OSC.
Include Total Organic Carbon (TOC) analyses for surface water samples.	TOC was not included for surface water.	This change was made to be more consistent with work being done for other mine SIs; it was made with concurrence from the OSC.

Appendix B

Site Photographs

Photo 1

Date: 7/22/03 Time: 1945

Looking southward across the entrance to the Idol City Mine site from the hillside to the north. The main house, bunkhouse, and collapsed log structure are shown.

Photo 2

Date: 7/22/03

Bunkhouse building near entrance to site, looking generally northeast; map

Time: 2004 location A.

Photo 3

Date: 7/22/03 Main house building near entrance to the site (on south side of the road); map location B.

Photo 4

Date: 7/22/03 Collapsed log structure near entrance to site; map location C. Time: 2002

Photo 5

Date: 7/22/03 Apparent collapsed adit in main works area near the northern intersection of Road 630 and the bypass road; map location D.

Photo 6

Date: 7/22/03 Time: 1524

Trash pit on the east side of Road 630 in the main working area; map location

E.

Photo 7

Date: 7/22/03 Time: 1522

Possible fruit cellar on the west side of Road 630 in the main working area; map location F.

Photo 8

Date: 7/22/03 Time: 1547

Looking generally northwest across the apparent inclined shaft area (now a debris and water-filled depression) toward head-frame; map locations G and H.

Photo 9

Date: 7/22/03 Looking northwest toward the large excavation (possible collapsed adit) on the west side of the gulch in the main working area; map location I.

Photo 10

Date: 7/22/03 Time: 1638

Looking generally east toward the waste piles on the west side of the gulch in the main working area (this area is immediately east of that in Photo 9); map location I.

Photo 11

Date: 7/22/03 Collapsed building with open shaft inside and waste piles, looking generally north; map location J.

Photo 12

Date: 7/21/03 Three soil sampling locations (No. 3, 4, and 9) on waste piles near open shaft; map location J.

Photo 13 Date: 7/22/03 Collapsed adit or prospect just north of building with open shaft; map location K.



Photo 14 Date: 7/22/03 Old truck with ball mill in southern part of main working area; map location L.

Photo 15 Date: 7/21/03 Looking east across the big pond at the large excavation approximately half Time: 1406 way up Road 630 in the site area; map location O.

Photo 16 Date: 7/22/03 Looking east at waste pile and possible collapsed adit area on east side of gulch; map location P.

Photo 17

Date: 7/22/03 Waste rock piles almost blocking the gulch; map location Q. Time: 1836

Photo 18

Date: 7/22/03 Open adit and water discharge at sampling station 12 at the south end of the site; map location R.

Photo 19 Date: 7/22/03 Looking from the open (southernmost) adit area across the road toward the waste rock/tailings pile and collapsed structure; map location S.

Photo 20 Date: 7/22/03 Soil sampling location WP-18 on the waste rock/tailings pile across Road 630 from the open adit. Note the light-colored material pulled from the boring at depth; map location S.

Photo 21

Date: 7/22/03 Upstream sampling station 07 in Gold Gulch. Time: 1350

Photo 22

Date: 7/21/03 Stream sampling station 05 in the main workings area (very narrow stream segment).

Photo 23

Date: 7/21/03 Time: 1600

Downstream sampling station 06 on Trout Creek.

Photo 24

Date: 7/22/03 Large pond at sampling station 13 with populations of *Lemna minor* and *Lemna major*.

Photo 25 Date: 7/21/03 Overview of sampling station 14 in the pond in the main working area. Time: 1740

Photo 26 Date: 7/21/03 Sample location WP-SSS-02, on waste rock pile just north of head frame. Note the darker soil excavated at depth.

Photo 27 Date: 7/22/03 Overview of sampling station 10 (colocated soil and plant tissue samples). Time: 1640

Appendix C General Information Form

GENERAL INFORMATION FORM

GENERAL Region/Station: Forest Number: 04 District No.: 06 Congressional District: 02 Project Name: Idol City Mine Project Type: Site Inspection Regional Priority: NA 5th Level HUC: 5th = Trout Creek $4^{th} = 17120002$ Silvies River Single Site: x Multiple Site: List all site names in multiple sites: **ENVIRONMENT** Watershed Name: Silvies River Regional Watershed Priority: 02 ~1300 mi² Watershed size (acres): Approx. 15 acres Size of disturbed area (acres): Nearest surface water source: Trout Creek Miles of stream impacted by site: ~500 ft. 303d listed impaired surface water Yes No x If 303d listed impaired, what are the water quality limited contaminants? Is the site affecting a Wild and Scenic river Yes No Describe potential for a catastrophic failure if not addressed: Low Beneficial uses downstream: Recreation, aquatic habitat Nearest critical sensitive area: Wetland On site Distance sensitive area is from site: Red-legged frog, spotted frog, pileated woodpecker, black-backed Sensitive species: woodpecker T&E species: Is the soil environment conducive to contaminant movement Yes x No Activities in the watershed that also contribute to environmental damage (logging, roads, dredging, grazing, etc.): Roads, mining, grazing, ATV use

Yes x No

Would a removal action have a noticeable positive impact on

or reduce the potential future risk of damaged resources Other critical information relating to the environment:

HUMAN HEALTH AND SAFETY

	Within 200 ft of	Within 4 mi of	Within 15 mi
	the Site	the Site	of the Site
Year round population based on residences	0	<10	NA
Seasonal population based on residences	0	<10	NA
Water wells	0	0	NA
Surface water intakes	0	0	0

Recreational activities within 200 ft of the site:

Recreational activities that occur within 15 mi of the site:

Established recreational sites within 200 ft of the site:

Established recreational sites within 15 mi of the site:

Established recreational sites within 15 mi of the site:

Depth to groundwater (ft):

Depth to groundwater (ft):

Beneficial uses downstream:

Physical hazards:

ATV riding, hiking

ATV riding, camping, hiking, hunting, fishing

ATV use observed on site

Informal camping areas, trails

NA

Recreation, aquatic habitat

Steep slopes, debris, ponds, adits and shafts

Hazard	
Dangerous Highwall	No
Subsidence	No
Vertical Opening/Shaft	Yes
Dangerous Impoundment	No
Dangerous Pile and Embankment	No
Dangerous Slide	No
Hazardous Equipment or Unstable Structures	Yes
Hazardous Explosive Gases	No
Hazardous Water Body/Ponds	Yes
Solid Waste	Yes
Horizontal Opening/Adit	Yes

Other critical information relating to health and safety:	

MIXED OWNERSHIP INFORMATION

% of the site on NFS land: 100 % of the watershed on NFS land: ~33

POTENTIAL CONTAMINATION

	Yes	No
Surface Water Indicators		
High turbidity in surface water		X
Active erosion into surface water	X	
Staining or precipitate/sediments		X
Aquatic kills		X
Visible plume		X
Discharges to surface water sources (i.e., adit drainage or leachate)	X	
Noticeable decline in aquatic population (compared to upstream of the site)		X
Surface water void of life in the area of the mine site		X
Site located in the floodplain/wetland	X	
Failing or Inadequate Design		
Oversteepened slopes		X
Unlined ponds		X
Inadequate landfill design or dumps		X
Unstable retainment structure		X
Past Practices		
Uncontrolled landfill/dump		X
Improper disposal		X
Chemical/wastes were stored onsite in drums/tanks, etc.		X
Past practices at site used hazardous materials		X
Other Indicators		
Stressed vegetation	X	
Dead vegetation or lack of vegetation		X
Animal kills		X
Visual contaminants	X	
Heavily stained soils/salts present	X	

Other critical potential contaminant information:	

ANALYTICAL/DOCUMENTED CONTAMINATION

Media	Distance	Location	Rate of Discharge	Contaminant	Exceedance	Background
Soil/Waste	On-site	Waste Piles	NA	Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Hg, Se, Ag, Tl, V, Zn	Various	Various
	On-site	Test Areas	NA	Al, As, Ba, Be, Cr, Co, Pb, Mn, Hg, Se, Tl, V, Zn	Various	Various
Sediment	On-site	Gold Gulch and Ponds	NA	Sb, As, Cd, Cu, Pb, Hg, Ni, Ag, Zn	Various	Various
	On-site	Adit	NA	Sb, As, Cu, Mn, Hg	Various	Various
	~500 feet	Trout Creek	NA	As, Cu, Hg, Zn	Various	Various
Water	On-site	Gold Gulch and Ponds	0.03 ft/sec	As, Ba, Cd, Pb, Mn, Zn, TDS	Various	Various
	On-site	Adit	Not Measurable	As, Ba, Ca, Fe, Mn, TDS	Various	Various
	~500 feet	Trout Creek	Not Measurable	Ba, TDS	Various	Various

ADDITIONAL STUDIES

Biological studies that show a decrease in the number and lower species diversity downstream of the site:	Yes	No	X
Increased mortality in nesting wildlife:	Yes	— No	X
Other critical contaminant information:			

Appendix D

Copies of Supporting Information

Oregon Natural Heritage Information Center

Institute for Natural Resources

July 18, 2003

OREGON STATE UNIVERSITY 1322 SE Morrison Street Portland, Oregon 97214-2423

Jeryl Kolb EA Engineering, Science, and Technology 12011 Bellevue-Redmond Road, Suite 200 Bellevue, WA 98005

Dear Mr. Kolb:

Thank you for requesting information from the Oregon Natural Heritage Information Center (ORNHIC). We have conducted a data system search for rare, threatened and endangered plant and animal records for your Idol City Mine Sites in Township 21 South, Range 32 East, Sections 4 and 9, W.M.

Zero (0) records were noted within a two-mile radius of your project.

Please remember that the lack of rare element information from a given area does not mean that there are no significant elements there, only that there is no information known to us from the site. To assure that there are no important elements present, you should inventory the site, at the appropriate season.

Please note that at this time ORNHIC does not have comprehensive computerized records available for all anadromous fish in Oregon. For more information on anadromous fish you may wish to contact NMFS at: 525 NE Oregon Street; Portland, Oregon 97232-2737. Please also note that the U.S. Fish and Wildlife Service now has jurisdiction over coastal cutthroat trout.

This data is confidential and for the specific purposes of your project and is not to be distributed.

If you need additional information or have any questions, please do not hesitate to contact me.

Sincerely,

Cliff Alton

Conservation Information Assistant

encl.: invoice (H-071803-CWA7)

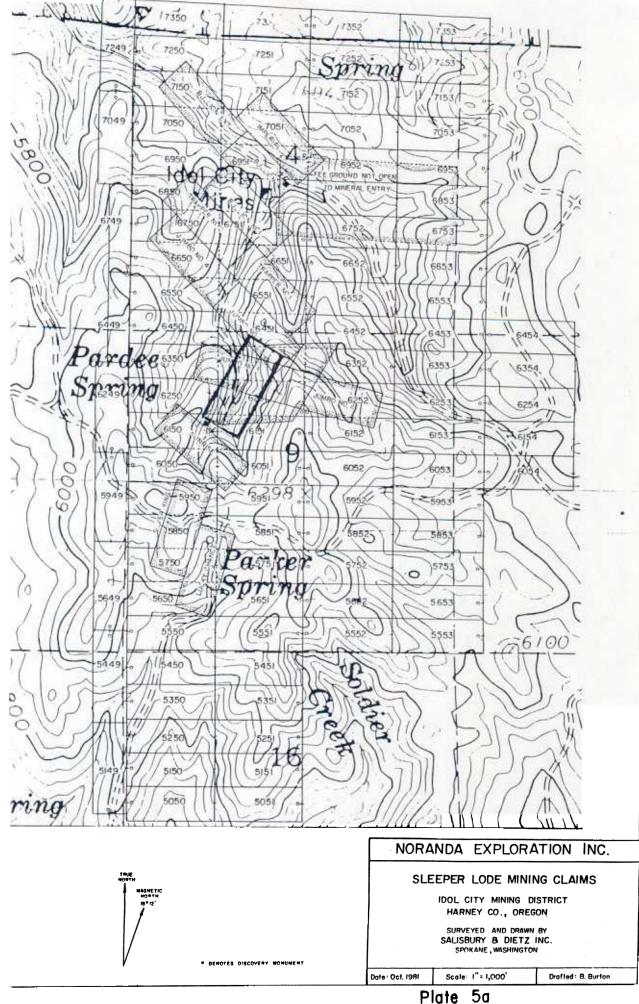
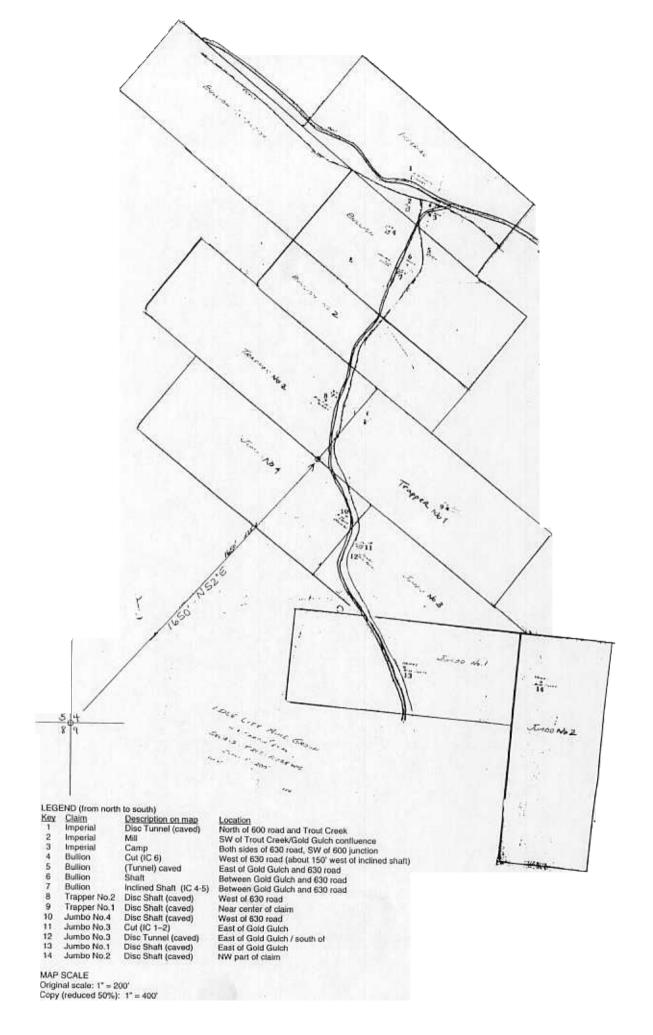



Plate 5a

Appendix E

Aquatic and Terrestrial Investigation Tables

TABLE E-1. MALHEUR NATIONAL FOREST SENSITIVE PLANT LIST FOR IDOL CITY MINE SITE

Scientific Name	Common Name	Habitat (Hitchcock)	Period when Identifiable
Allium brandegei	Wild onion	ND	Apr-June
Allium campanulatum	Wild onion	Alpine, dry	June-Aug
Allium atratus owyheensis	Wild pea	ND	ND
Allium diaphanus diurnus	Wild pea	ND	Apr-June
		Dry ponds, pine	•
Astragulus tegetaroides	Wild pea	forests	May-Sept
Botrychium ascendens	Grape fern	Moist areas	July-Sept
Botrychium crenulatum	Grape fern	Moist areas	July-Sept
Botrychium lanceolatum	Grape fern	Moist areas	July-Sept
Botrychium minganense	Grape fern	Moist areas	July-Sept
Botrychium pinnatum			•
(boreale)	Grape fern	Moist areas	July-Sept
Bupleurum americanum	Wild carrot	Rock outcrops	June- Aug
	Long bearded Sego		
Calochortus longebarbatus	Lilly	Wet areas	July-Aug
Cymoterus nivalis	Wild carrot	High mountains	June-Aug
		Open coniferous	
Cypripedium fasciculatum	Ladyslipper orchid	forest	May-Aug
Dryopteris filix-mas	Male Wood-fern	Moist areas	June-Sept
Geum rossi v. turbinatum		Alpine talus	July-Aug
Lomatium erythrocarpum	Wild parsley	ND	July Aug
Luina serpintina	Colonial Luina	Rocky serpent.	June -Aug
Lupinus cusickii	(L. lepidus)	Blue Mountains	June -Aug
Lycopodium complanatum	Ground cedar	Moist coniferous forest	June-Sept
	Washington		•
Mimulus washingtonensis	Monkeyflower	ND	June-July
Ŭ.	•	Dry sage/pond	•
Oryzopsis hendersonii	Ricegrass	pine	May- July
	Bridge's Cliff Brake	_	
Pellaea bridgesii	Fern	Rocky slopes	May-Oct
Phacelia minutissima	Least phacelia	ND	June-July
	Semaphore (nodding		-
Pleuropogon oregonus	grass)	ND	June-Aug
		Wet areas,	
Ranunculus oresterus	Buttercup	foothills	May-June
Thelypodium eucosmum	Thelypody	Lower canyons	June-July
Thelypodium howellii	Thelypody	ND	May-July

Source: U. S. Forestry Service

ND = Not determined

TABLE E-2. HARNEY COUNTY LISTED WILDLIFE SPECIES IN THE BLUE MOUNTAIN ECOREGION

Scientific Name	Common Name	Federal and (State) Status
AVIAN SPECIES		
Accipiter gentilis	Northern Goshawk	SoC
Ammodramus savannarum	Grasshopper sparrow	SV/SP (Or)
Amphispiza belli	Sage sparrow	SC (Or)
Athene cnicularia hypugaea	Western burrowing owl	SoC, SC (Or)
Buteo regalis	Ferruginous hawk	SoC, SC (Or)
Buteo swainsoni	Swainson's hawk	SV (Or)
	Western greater sage-	
Centrocerus urophasianus phaios	grouse	SoC, SV (Or)
Chordeiles minor	Common nighthawk	SC (Or)
Chlidonias niger	Black tern	SoC
Coccyzus americanus	Yellow-billed cuckoo	SoC, SC (Or)
Contopus cooperi	Olive-sided Flycatcher	SoC
Dolichonyx oryzivorus	Bobolink	SV (Or)
Dryocopus pileatus	Pileated Woodpecker	SV (Or)
Empidonax traillii adastus	Willow Flycatcher	SoC, SU (Or)
Falco columbarius*	Merlin	NA
Falco peregrinus anatum	Peregrine Falcon	LE (Or)
Glaucidium gnoma	N. Pgymy Owl	SV (Or)
Grus canadensis tabida	Greater sandhill crane	SV (Or)
Haliaeetus leucocephus	Bald Eagle	LT
Icteria virens	Yellow-breasted chat	SoC, SC (Or)
Lanius ludovicianus	Loggerhead shrike	SV (Or)
Melanerpes lewis	Lewis's Woodpecker	SoC, SC (Or)
Numenius americanus	Long-billed curlew	SV (Or)
Oreotyx pictus	Mountain quail	SoC, SU (Or)
Otus flammeolus	Flammulated Owl	SC (Or)
	White-headed	
Picoides albolarvatus	Woodpecker	SoC, SC (Or)
	Black-backed	
Picoides arcticus	woodpecker	SC (Or)
Podiceps auritus	Horned grebe	SP (Or)
Riparia riparia	Bank swallow	SU (Or)
Sialia mexicana	Western bluebird	SV (Or)
Sitta pygmaea	Pygmy Nuthatch	SC/SV (OR)
Sphyrapicusthyroideus	Williamson's sapsucker	SU (Or)
Strix nebulosa	Great Gray Owl	SV (Or)
Stunella neglecta	Western meadowlark	SC (Or)
Tympanuchus phasianellus	Columbian sharp-tailed	
columbianus	grouse	SoC

TABLE E-2. CONTINUED

Scientific Name	Common Name	Federal and (State) Status
MAMMALIAN SPECIES		
Antrozous pallidus pallidus	Pallid Bat	SV (Or)
Brachylagus idahoensis	Pygmy Rabbit	SoC, SV (Or)
Canis lupus	Gray wolf	LE
	Pale Western Big-eared	
Corynorhinus townsendii pallescens	Bat	SoC, SC (Or)
Gulo gulo luteus	California Wolverine	SoC, LT (Or)
Lasionycteris noctivagans	Silver-haired bat	SoC, SU (Or)
Lasiurus cinereus*	Hoary Bat	NA
Lepus townsendii	White-tailed jackrabbit	SU (Or)
Lynx canadensis	Canada Lynx	LT
	Western Small-footed	
Myotis ciliolabrum	Bat	SoC, SU (Or)
Myotis evotis	Long-eared Bat	SoC, SU (Or)
Myotis volans	Long-legged Bat	SoC, SU(Or)
Myotis yumanensis	Yuma Bat	SoC
Myotis thysanodes	Fringed Bat	SoC, SV(Or)
Sorex preblei	Preble's shrew	SoC
REPTILE AND AMPHIBIAN SPEC	CIES	
Crotalus viridis	Western rattlesnake	SV (Or)
Phrynosoma platyrhinos	Desert horned lizard	SV (Or)
Rana luteiventris	Columbia spotted frog	C, SU (Or)
	Northern sagebrush	
Sceloporus graciosus graciosus	lizard	SoC, SV (Or)
FISH SPECIES		
Cottus dendirei	Malheur mottled sculpin	SoC, SV(Or)
Salvelinus confluentus	Bull trout	LT, SV (Or)

Source: Oregon Natural Heritage Program (2001)

C = Candidate, federal

LE = Listed Endangered, state or federal

LT = Listed Threatened, state or federal

SoC = Federal Species of Concern; under review by US Fish and Wildlife Service

Or= Oregon Fish and Wildlife Commission, Sensitive Species:

SC = Critical, listing is pending or may be appropriate

SV = Vulnerable; population declining, but listing not imminent

SP = Peripheral or naturally rare

SU = Undetermined status

^{*}Natural Heritage Rank only, no Federal or State status

TABLE E-3. PLANT SPECIES OBSERVED ON SITE AT IDOL CITY MINE, JULY 2003

Scientific Name	Common Name
Achillea millefolium var. lanulosa	Western yarrow
Anaphalis margaritacea	Pearly everlasting
Angelica genuflexa	Kneeling angelica
Aquilegia formosa	Columbine
Artemisia arbuscula	Low sagebrush
Artemisia rigida	Stiff sagebrush
Artemisia sp.	Sagebrush species
Aster conspicuus	Showy aster
Callitriche sp.	Water-starwort species
Carex obnupta	Slough sedge
Delphinium sp.	Delphinium species
Eleocharis palustris	Creeping spikerush
Eriogonum heracleoides	Creamy buckwheat
Galium boreale	Northern bedstraw
Geranium sp.	Wild geranium
Glyceria sp.	Manna grass species
Grindelia nana	Low gumweed
Hypericum perforatum	St. John's wort
Ipomopsis aggregata	Desert trumpet
Juncus sp.	Rush species
Juniperus occidentalis	Western juniper
Lemna minor	Duckweed
Lupinus sericeus	Silky lupine
Penstemon procerus	Pincushion penstemon
Potentilla gracilis	Fivefinger cinquefoil
Pseudotsuga menziesii	Douglas fir
Ranunculus aquatilis	White water buttercup
Ribes cereum	Squaw currant
Rumex crispus	Curly dock
Salix lasiandra	Pacific willow
Sitanion hystrix	Bottlebrush squirreltail
Sparganium emersum	Narrowleaf bur-reed
Symphoricarpos albus	Common snowberry
Thalictrum occidentale	Western meadow rue
Tragopogon dubius	Oyster plant
Veronica americana	American speedwell

TABLE E-4. WILDLIFE SPECIES OBSERVED AT IDOL CITY MINE, **JULY 2003**

Scientific Name	Common Name
AVIAN SPECIES	
Carduelis tristis	American goldfinch
Certhia americana	Brown creeper
Corvus corax	Common raven
Cyanocitta stelleri	Steller's jay
Dryocopus pileatus*	Pileated woodpecker
Falco mexicanus	Prairie falcon
Junco hyemalis	Dark-eyed junco
Meleagris gallopavo	Wild turkey
Nucifraga columbiana	Clark's nutcracker
Parus atricapillus	Black-capped chickadee
Pheucticus melanocephalus	Black-headed grosbeak
Picoides arcticus*	Black-backed woodpecker
Picoides villosus	Hairy woodpecker
Pipilo chlorurus	Green-tailed towhee
Pipilo maculatus	Spotted towhee
Sitta canadensis	Red-breasted nuthatch
Sitta carolinensis	White-breasted nuthatch
Sphyrapicus nuchalis	Red-naped sapsucker
Turdus migratorius	American robin
Zonotrichia leucophrys	White-crowned sparrow
MAMMALIAN SPECIES	
Canis latrans	Coyote
Citellus lateralis	Golden-mantled squirrel
Eutamias minimus	Least chipmunk
Odocoileus hemoinus	Mule deer
Taxidea taxus	Badger
AMPHIBIAN AND REPTILIAN SP	CIES
Hyla regilla	Pacific tree frog
Rana aurora**	Red-legged frog
Rana pretiosa**	Spotted frog
Taricha granulosa	Rough-skinned newt
Thamnophis sirtalis	Common garter snake

^{*}Listed species for Harney County, see status in Table 2.
**Federal and State Status only, not listed for Harney County

TABLE E-5. NUMBER AND RELATIVE ABUNDANCE OF TAXA COLLECTED FROM POOL HABITAT, IDOL CITY MINE, 22 JULY 2003

	BM-13	
Taxa	No.	%
Tubificidae	58	7.22
Helobdella stagnalis	1	0.12
Hyalella azteca	300	37.36
Hydracarina	5	0.62
Callibaetis	297	36.99
Enallagma	22	2.74
Aeshnidae	3	0.37
Corixidae	3	0.37
Notonecta	8	1.00
Nebrioporus	22	2.74
Brychius	18	2.24
Tropisternus	3	0.37
Chaoborus	3	0.37
Tanypodinae	3	0.37
Pentaneurini	16	1.99
Chironomini	19	2.37
Tanytarsini	10	1.25
Prionocera	8	1.00
Stagnicola	3	0.37
Pisidium	1	0.12
Total	803	100.00

TABLE E-6. NUMBER AND RELATIVE ABUNDANCE OF TAXA COLLECTED FROM RIFFLE HABITAT, IDOL CITY MINE, 21-22 JULY 2003

				ST-BM-06 nstream)	IDOL-ST-BM-07 (Upstream)	
Taxa	No.	%	No.	%	No.	%
Turbellaria			1	0.09	4	2.35
Lumbriculidae	1	1.52				
Tubificidae			24	2.15	7	4.12
Helobdella stagnalis	1	1.52	10	0.90	10	5.88
Ostracoda			4	0.36		
Hydracarina			4	0.36	11	6.47
Ameletus					5	2.94
Siphlonurus			83	7.44		
Baetis tricaudatus			8	0.72	20	11.76
Heptageniidae			16	1.43	2	1.18
Paraleptophlebia			101	9.06		
Ephemerellidae					1	0.59
Zapada cinctipes					3	1.76
Sweltsa			1	0.09	17	10.00
Limnoporus			4	0.36		
Notonecta			2	0.18		
Ochrotrichia					1	0.59
Neophylax					2	1.18
Dicosmoecus gilvipes			10	0.90		
Apatania	44	66.67			4	2.35
Hydroporus			8	0.72		
Agabus			9	0.81		
Dytiscus	1	1.52				
Colymbetes			1	0.09		
Laccophilus			4	0.36		
Rhantus			9	0.81		
Nebrioporus			31	2.78	1	0.59
Sanfilipodytes			8	0.72	6	3.53
Heterlimnius koebelei			4	0.36		
Helophorus					4	2.35
Paracymus			4	0.36		
Enochrus			4	0.36	1	0.59
Pentaneurini			4	0.36		
Diamesinae			36	3.23	4	2.35
Orthocladiinae	19	28.79	32	2.87	2	1.18
Chironomini			40	3.59	1	0.59
Tanytarsini			636	57.04	45	26.47
Dixa					2	1.18
Pericoma					1	0.59
Ptychoptera					1	0.59

	IDOL-ST-BM-05 (Downstream) (Downstream)		IDOL-ST-BM-07 (Upstream)			
Taxa	No.	%	No.	%	No.	%
Simulium					6	3.53
Tipula					1	0.59
Dicranota			5	0.45	3	1.76
Hexatoma			4	0.36	3	1.76
Hemerodromia			8	0.72		
Odontomyia					1	0.59
Caloparyphus					1	0.59
Total	66	100.00	1,115	100.00	170	100.00

TABLE E-7. SUMMARY OF LEVEL 3 METRICS FOR MACROINVERTEBRATE SAMPLING LOCATIONS NEAR IDOL CITY MINE

Sample Number	Date	Sample Type	Sample Location	Taxa Richness	Mayfly Richness	Stonefly Richness	Caddisfly Richness	Sensitive Taxa	Sediment Sensitive Taxa	Modified HBI	Percent Tolerant Taxa	Percent Sediment Tolerant Taxa	Percent Dominant (single taxa)
IDOL-PD-BM-13	22-Jul-03	Pool	Big pond	20	1	0	0	0	0	7.9	52.8	8.6	37.4
IDOL-ST-BM-05	21-Jul-03	Riffle	At mine	5	0	0	1	1	0	2.4	4.5	1.5	66.7
IDOL-ST-BM-06	21-Jul-03	Riffle	Downstream	31	4	1	1	0	0	5.6	16.8	3.0	57.0
IDOL-ST-BM-07	22-Jul-03	Riffle	Upstream	30	4	2	3	1	0	4.7	15.9	8.2	26.5

HBI = Hilsenhof Biotic Index

TABLE E-8. SUMMARY OF HABITAT ASSESSMENT SCORES FOR IDOL CITY MINE SITE, JULY 2003

		Station	
	05	06	07
Habitat Parameter	At mine	Downstream	Upstream
Epifaunal substrate/available cover	2	7	5
Embeddedness	9	15	12
Velocity/depth regime	2	3	3
Sediment Deposition	3	7	11
Channel flow status	1	3	2
Channel alteration	11	12	11
Frequency of riffles (or bends)	4	3	2
Bank stability			
Left bank	8	9	4
Right bank	3	6	6
Vegetative protection			
Left bank	8	9	4
Right bank	3	4	5
Riparian vegetative zone width			
Left bank	9	10	6
Right bank	3	3	6
SCORE	66	91	77

Appendix F

Soil Sample Log

TABLE F-1. SOIL SAMPLE LOG

Sample No.	Sample Depth	Date Collected	Time Collected	Soil Description
	-			
WP-SSS-01	0.5	7/22/2003	1040	Silty, sandy GRAVEL to gravelly SAND; tan to orange (waste rock)
WP-SSS-02	0.5	7/21/2003		Silty, gravelly SAND; tan to lt orange (waste rock). (Tan at surface, grades to reddish at ~6".)
WP-SUS-02	3.5	7/21/2003		Silty, gravelly SAND; dk brown to red brown, angular gravel (native soil?).
WP-SSS-03	0.5	7/21/2003	1630	Sl. silty, sandy GRAVEL, angular; tan to orange to lt. brown, dry to moist, loose to dense (waste rock).
WP-SUS-03	3.5	7/21/2003	1730	Silty, gravelly SAND; orangish-tan and mottled (orange-tan-gray), dry to moist, loose to med-dense (waste rock).
WP-SUS-04	1.0	7/21/2003	1820	Sl. silty, sandy GRAVEL, trace of cobbles, angular; buff to tan (waste rock).
BG-SSS-08	0.5	7/22/2003	1245	Silty, sl. gravelly SAND; dk. brown, moist, some roots (native soil).
WP-SSS-09	0.5	7/21/2003	1615	Silty, sandy GRAVEL; orange-brown, dry to moist (waste rock).
TA-SSS-10	0.5	7/22/2003	1100	Silty, sandy GRAVEL; brown to dk. brown, dry, dense (native soil).
TA-SSS-11	0.5	7/22/2003	1015	Silty, sandy GRAVEL, angular; brown (native soil or placer tailings?).
WP-SSS-17	0.5	7/22/2003	1330	Sl. silty, gravelly SAND; tan and orange, dry, loose (waste rock).
WP-SUS-18	5.5	7/22/2003		Silty, gravelly SAND; tan to lt. brown (waste rock or tailings).
TA-SSS-19	0.3	7/22/2003	1500	Silty, gravelly SAND; dk brown, organic (native soil).
TA-SSS-20	0.5	7/22/2003		Silty, gravelly SAND to silty sandy GRAVEL; brown to red brown (soil overburden?).
WP-SSS-21	0.5	7/22/2003	1835	Silty, sandy GRAVEL; orangish-tan (waste rock).
TA-SUS-22	1.0	7/23/2003		Silty, sandy GRAVEL to silty, gravelly SAND; red-brown (soil overburden?).
TA-SSS-23	0.5	7/23/2003		Silty, sandy GRAVEL to silty, gravelly SAND; brown to sl. Red-brown, dry to moist (soil overburden?)

Appendix G Laboratory Analytical Reports

TABLE G-1 - SURFACE WATER ANALYTICAL RESULTS IDOL CITY MINE SITE INSPECTION

										TA	L Me	tals a	nd Cya	nide, U	Infilter	ed, μg	/L								
Sample No.	Sample Date	ALUMINUM	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	CADMIUM	CALCIUM	CHROMIUM, TOTAL	COBALT	COPPER	CYANIDE	IRON	LEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER	SODIUM	THALLIUM	VANADIUM	ZINC
AD-SFW-12	07/22/03	1510	<4.7	399	126	< 0.2	< 0.6	186000	<1.4	6.1	10.2	<10	37000	3.3	56200	1870	0.73	<2.1	3450	<3.4	<2.2	16500	< 5.7	4.3	25.6
PD-SFW-13	07/22/03	80	<4.7	17.5	82.1	< 0.2	< 0.6	53800	<1.4	<2	3	<10	421	<1.3	15600	168	< 0.1	<2.1	3200	<3.4	<2.2	10000	< 5.7	<2	5.9
PD-SFW-14	07/21/03	473	<4.7	12.2	111	< 0.2	2.2	49800	<1.4	<2	8.3	<10	2150	40.4	15300	167	< 0.1	<2.1	4900	<3.4	<2.2	9620	< 5.7	<2	170
ST-SFW-05	07/22/03	3940	5.8	61.2	369	0.58	17.2	73300	<1.4	11.1	97.3	<10	10900	1540	18400	2440	0.44	9.7	4880	<3.4	<2.2	10100	< 5.7	11.7	1550
ST-SFW-06	07/21/03	448	<4.7	<4.8	186	< 0.2	0.67	72200	<1.4	<2	4.9	<10	572	11.1	17300	57.5	< 0.1	<2.1	3410	<3.4	<2.2	7190	< 5.7	<2	39.7
ST-SFW-07	07/22/03	91.7	<4.7	<4.8	121	< 0.2	< 0.6	60800	<1.4	<2	<2.4	<10	168	<1.3	14400	9.3	< 0.1	<2.1	2840	<3.4	<2.2	10000	< 5.7	<2	4.7

Notes:

TAL = Total Analyte List

< = Constituent was analyzed for but not detected.

TABLE G-2 - ACID BASE ACCOUNTING (ABA) RESULTS FOR SOIL SAMPLES IDOL CITY MINE SITE INSPECTION

Sample No.	Sample Depth (feet)	Date	Neutralization Potential (Kg CaCO3/ton)	Fizz Rating (no units)	Maximum Potential Acidity (Kg CaCO3/ton)	Neutralization Potential (Kg CaCO3/ton)	Paste pH	Sulfate Sulfur (Wt %)	Sulfide Sulfur (Wt %)	Total Sulfur (Wt %)
Background										
BG-SSS-08	0.5	07/22/03	0.5	none	0.3	0.8	6.1	0.05	0.01	0.06
Waste Piles										
WP-SSS-03	0.5	07/21/03	-26.4	none	14.4	-12.0	4.4	1.24	0.46	1.7
WP-SUS-03	3.5	07/21/03	-6.5	none	8.8	2.3	3.4	1.83	0.28	2.11
WP-SUS-18	5.5	07/22/03	-11.4	none	4.4	-7.0	3.7	0.50	0.14	0.64

Kg CaCO3/ton = kilograms of calcium carbonate needed to neutralize one ton of waste/soil. Negative number indicates lack of CaCO₃, positive value indicates excess.

STL Burlington Colchester, Vermont

Sample Data Summary Package

SDG: IDW001

September 15, 2003

Ms. Jennifer Kindred EA Engineering 12011 Bellevue-Redmond Rd. Suite 200 Bellevue, WA 98005

Re: Laboratory Project No. 23046

Case No. 23046; SDG: IDW001

Dear Ms. Kindred:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 26, 2003. Laboratory numbers have been assigned and designated as follows:

Lab ID	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 07/26/03	ETR No: 95013	
535879	IDOLPDSFW14	07/21/03	Water
535880	IDOLPDSFW14F	07/21/03	Water
535881	IDOLSTSFW06	07/21/03	Water
535882	IDOLSTSFW06F	07/21/03	Water
535883	IDOLSTPW06	07/21/03	Water
535884	IDOLSTPW06F	07/21/03	Water
535885	IDOLSTPW07	07/22/03	Water
535885MS	IDOLSTPW07MS	07/22/03	Water
535885DP	IDOLSTPW07REP	07/22/03	Water
535886	IDOLSTPW07F	07/22/03	Water
535886MS	IDOLSTPW07FMS	07/22/03	Water
535886DP	IDOLSTPW07FREP	07/22/03	Water
535887	IDOLSTPW07100	07/22/03	Water
535888	IDOLSTPW07100F	07/22/03	Water
535889	IDOLSTSFW07	07/22/03	Water
535889MS	IDOLSTSFW07MS	07/22/03	Water
535889DP	IDOLSTSFW07REP	07/22/03	Water
535890	IDOLSTSFW07F	07/22/03	Water
535890MS	IDOLSTSFW07FMS	07/22/03	Water
535890DP	IDOLSTSFW07REP	07/22/03	Water
535891	IDOLSTSFW07100	07/22/03	Water
535892	IDOLSTSFW07100F	07/22/03	Water

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 07/26/03	ETR No: 95017	
535917	IDOLADSFW12	07/22/03	Water
535918	IDOLADSFW12F	07/22/03	Water
535919	IDOLPDSFW13	07/22/03	Water
535920	IDOLPDSFW13F	07/22/03	Water
535921	IDOLSTPW05	07/22/03	Water
535922	IDOLSTPW05F	07/22/03	Water
535923	IDOLSTSFW05	07/22/03	Water
535924	IDOLSTSFW05F	07/22/03	Water

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample login is included in the Sample Handling section of this submittal.

Due to software limitations some of the sample identifications have been truncated on the laboratory results. The entire sample identification will appear in the electronic deliverable.

Due to a laboratory error, no preserved aliquot was provided for the hardness determination for the following samples: IDOLSTPW06, IDOLSTPW07 and IDOLSTPW07100. The laboratory sub sampled the unpreserved fraction and acidified it with nitric acid.

This narrative identifies anomalies that occurred during the analyses of samples in this delivery group. If there is no description following regarding a certain methodology requested on the chain-of-custody record, then there were no exceptions to the laboratory quality control criteria noted during that analysis.

Metals by 6010B:

The spike recovery for the sample designated IDOLSTSFW07F yielded a percent recovery for selenium (68.2%) marginally below the established control limits for selenium.

The blank spike sample designated LCSW0808E yielded a percent recovery for silver (78.6%) slightly below the established control limits.

Mercury by 7470A:

The preparation blanks for the samples analyzed on 08/08/03 were inadvertently prepared at a concentration of 1.0 ppb instead of 5.0 ppb. The associated forms have been adjusted accordingly to reflect the actual concentration prepared.

Sulfate by 375.4:

The matrix spike analysis of the sample designated IDOLSTPW07 yielded a percent recovery (68%) marginally below the established control limits.

The samples designated IDOLPDSFW14, IDOLSTSFW06 and IDOLSTPW06 was accomplished 1 day beyond the prescribed holding time due to an error in the laboratory.

Ms. Jennifer Kindred September 15, 2003 Page 3 of 3

Total Dissolved Solids by 160.1:

The analysis of the sample designated IDOLSTSFW05 was accomplished outside of the prescribed holding time due to an error in the laboratory.

The samples designated IDOLPDSFW14, IDOLSTSFW06 and IDOLSTPW06 was accomplished 1 day beyond the prescribed holding time due to an error in the laboratory.

Volatile Solids by 160.4:

The samples designated IDOLPDSFW14, IDOLSTSFW06 and IDOLSTPW06 was accomplished 1 day beyond the prescribed holding time due to an error in the laboratory.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 0.542...

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The Laboratory Director or his designee, as verified by the following signature, has authorized the release of the data contained in this hardcopy data package.

Sincerely,

Michael F. Wheeler, Ph.D.

Laboratory Director

Enclosure MFW/jtw/cja

ODOI-C LAST ALPHA

SEVERN TRENT LABORATORIES, INC. SEVERN TRENT

STL Burlington208 South Park Drive, Suite 1
Colchester, VT 05446 Tel 802 655 1203

DayIng

CHAIN OF CUSTODY RECORD

∀/N **≻** / N Lab/Sample ID (Lab Use Only) STL cannot accept verbal changes. Client's delivery of samples constitutes acceptance of Severn Trent Laboratories Please Fax written changes to when received (C*): Screened For Radioactivity Temp. of coolers Lab Use Only Due Date: **Custody Seal** (802) 655-1248 Intact terms and conditions contained in the Price Schedule. ö Remarks St. - Sludge . व्यक्तातित्व REQUESTED ANALYSIS くんの P/0 - Plastic or other_ Time Time Time C - Charcoal Tube 250 P/0 Date Date No/Type of Containers2 A/G 1 Lt. 250 ml - Glass wide mouth ð A - Air bag Invoice to: Required by: (Signature Received by: (Signature Received by: (Signature - BA-ST-PN-DE 10-N#N-10-SAME L - Liquid Sampler's Signature 1701-PD-SFW-13 Phone: Fax: Company: Contact: Address: 4701-47-CFW-19 A/G - Amber / Or Glass 1 Liter 7 Idol City Mine Soil Identifying Marks of Sample(s) Time Address: 12011 REYEVEE - LEDMOND RD. W - Water 78005 Date Date 10CT Phone: 435- 451- 7400 X 144 CITY MINE 1007 ENGINEERING Fax: 451- 7800 ΔM Contact: CATHY BÖMLKE Report to: Wastewater Sarahti Kole 40 ml vial BELLEVUE, Relihquished by (Signature) Relinquished by: (Signature) linquished by: (Signature) οE 1389,081-0007 1001 ۷Ó ≷ nonfolidly S. 12/20 06870/M Time Company: EA Sampler's Name Date Onote: ²Container Contract/ Proj. No. 'Matrix Matrix¹

STL SEVERN TRENT

STL Burlington

Colchester, VT 05446 Tel 802 655 1203 208 South Park Drive, Suite 1

CHAIN OF CUSTODY RECORD ≻ / N ≻ / N Lab/Sample ID (Lab Use Only) STL cannot accept verbal changes. Client's delivery of samples constitutes acceptance of Severn Trent Laboratories Piease Fax written changes to when received (C°): For Radioactivity Temp. of coolers Lab Use Only Due Date: **Custody Seal** (802) 655-1248 Screened Intact terms and conditions contained in the Price Schedule. ö , 0 Remarks SL - Sludge all ANALYSIS ON REQUESTED & 0835 P/0 - Plastic or other _ Time Time C - Charcoal Tube 9 P/0 ک 9 Date No/Type of Containers² 250 A/G 1 Lt. 250 ml - Glass wide mouth A - Air bag δV Invoice to: Received by: (Signature Received by: (Signature Received by: (Signature SAME Salan jast L - Liquid Sempler's Signature 00-Md-18-7007 の一人大人ノスト Fax. Phone: Contact: Company: Address: 71-MX-04-109# A/G - Amber / Or Glass 1 Liter Identifying Marks of Sample(s) Time Address: 19011 Ballevue - Repmons PA W - Water SEVERN TRENT LABORATORIES, INC. BELLEVUE MA 98005 Date I do liku Phone: 425-451-7400 x 144 1200 CITY MINE ENGINEELING Contact: CATHY BOHLKE Fax: 435.451- 7800 WW - Wastewater VOA - 40 ml vial Report to: Project Name youan Trader Relinquished by: (Signature) Relinquished by: (Signature) RS90019-17hm. 183 D+178121-10 204 Time Company: EA Sampler's Name Onote: Matrix¹ Date 2Container Contract/ Proj. No. 1 Matrix

SEVERN TRENT LABORATORIES, INC. SEVERN TRENT

STL Burlington208 South Park Drive, Suite 1
Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD

∀/N ≻ 'z Lab/Sample ID (Lab Use Only) Client's delivery of samples constitutes acceptance of Severn Trent Laboratories when received (C°): Temp. of coolers For Radioactivity Lab Use Only Due Date: Custody Seal Screened Intact terms and conditions contained in the Price Schedule. PIZZAINE Remarks REQUESTED ANALYSIS 0835 Time Time P/0 9 Date Date No/Type of Containers2 250 A/G 1 Lt. Ş Invoice to: Received by: (Signature Received by: (Signature Received by: (Signature SAME TDOL-ST -SFW-07-MS 01-10-MY Sampler's Signatur Company: Phone: Fax: Contact: Address: 4DD1-57-5FW-01 - PW Identifying Marks of Sample(s) Time Fablished Mine Address: 12011 BELEVILE READONS RD. DOL-57 Date BELLEVUE, WA 98005 Phone: 435- 451-7400 X 144 Quote: 100L CITY MINE COL ENG, INCERING BUHLLE Fax: 435- 451- 7800 Savan T. Koser Report to: Project Name Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Contact: CATHY 3890-1002 多 122/1250 Time Company: E4 Sampler's Name Matrix¹ Date Contract/

STL cannot accept verbal changes.

ō 0

SL - Sludge

P/O - Plastic or other _

250 ml - Glass wide mouth A - Air bag

A/G - Amber / Or Glass 1 Liter

L - Liquid

Soil

Water

≥

 Wastewater - 40 ml vial

§ §

2Container

Matrix

C - Charcoal Tube

Please Fax written changes to

(802) 655-1248

Chain of Custody Record EA Engineering

STL Seattle 5755 8th Street E. Tacoma, WA 98424 Tel. 253-922-2310 Fax 253-922-5047 www.stl-inc.com

SEVERN

STL

Chemit Dolle / We - Redward Dd	nd led.	Project Manager	Manager Pr	11/26	Hy con	Date 7/24/03	Chain of Custody Number 01525	いた ひ ひ
Address PX VXX 0		Telephone 727	16 二	del/Fax Number	12/15/2014 12/15/2014	Lab Number	Page	
State Zip Code Only MR 9005	Code	Site Contact	act.	Lab Contact Peunning McGrumb		Analysis (Attach list if more space is needed)		
Project Name and Location (State) LOS (174 MI) Ne (3890,09-0002	2009-	Carrier/W.	Carrier/Waybill Number		ALINE Sunda	-	Special	Special Instructions/
l			Matrix	Containers & Preservatives			Condition	Conditions of Receipt
Sample I.D. and Location/Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous Sed. Soil	NªOH NªOH HCI HMO3 HSO¢	SQT SQT XOLDS XOLD			
[DOL-ST-PW-07	Topos	0041	×	5	$\langle \dot{\chi} \dot{\chi} \dot{\chi} $			
LDOL-ST-PW-07-MS			><	5	$ \dot{\chi} \chi\chi\chi \chi$			
DDD - 51-PW-D7-100	75		χ	5	XXXX			
								, January 1
	l Iden		1		Sample Disposal	☐ Disposal By Lab		(A fee may be assessed if samples
Ves No Cooler Temp:	azard Liammable	-	Skin irritant	L Poison B Unknown	C Keturn Io Cilent	Archive For	Months are retained for	ger man 1 monum
iurn Around i ime kequired (business days) 24 Hours	ays 🛚 15 Days	□ Other		Ac vedanements tobecuts				
1946			D3 OV	1. Received By			Date (6/57	Time 08.2 5
2. Relinquished By		Date	Time	2. Received By			Date	. Time
3. Relinquished By		Date	Time	3. Received By			Date	Time
Comments								

Geotechnical Analysis Sample Data Summary Package

EASEAT SDG: IDWOOL

Sample Report Summary

Client Sample No.

IDOLPDSFW14

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535879

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	09/09/03		mV	1	10	159	
							<u> </u>	ļ
				<u> </u>				-
						l		
:								
							•	
]		

Sample Report Summary

Client Sample No.

IDOLSTSFW06

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535881

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

	Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
	QSOA	Redox Potential D1498	09/09/03		mV	1	10	160	
							·		
1									1

Sample Report Summary

Client Sample No.

IDOLSTPW06

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535883

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
QSOA	Redox Potential D1498	09/09/03		mV	1	10	158	
ļ								
			:					
						-		
						<u> </u>		
:								
				-				
:								
1								
							-	
~								

Duplicate Sample Report Summary

Client Sample No.

IDOLSTPW07REP

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535885DP

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Samı Resi Conc.	ult	Dupli Sample Conc.	cate Result Qual.	RPD*
QSOA	Redox Potential D1498	09/09/03		mV	157		155		1
1									
						1	1	l	

^{*} Control Limit for RPD is +/- 20%, unless otherwise specified

Sample Report Summary

Client Sample No.

IDOLSTPW07

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535885

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	. DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	09/09/03		mV	1	10	157	
						,		
						ì		
					:			
:								
			-	:				
			: :					
:								
			;					

Sample Report Summary

Client Sample No.

IDOLSTPW07100

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535887

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	09/09/03		m∨	1	10	155	
÷								
		1						

Duplicate Sample Report Summary

Client Sample No.

IDOLSTSFW07REP

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535889DP

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Samp Resi Conc.	ılt	Dupli Sample Conc.	cate Result Qual.	RPD*
QSOA	Redox Potential D1498	09/09/03		mV	158		155		2
									•
:									
							: :		
							ĺ		
}									
								ļ	

^{*} Control Limit for RPD is +/- 20%, unless otherwise specified.

Sample Report Summary

Client Sample No.

IDOLSTSFW07

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535889

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

	Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
	QSOA	Redox Potential D1498	09/09/03		m∨	1	10	158	
	:								
1				:					
	:								
							1		
									١.
			:			1			
		•							
1									
			2						
								ŀ	
-								Ε	
							-		
ı				l	i			l	(I

Sample Report Summary

Client Sample No.

IDOLSTSFW07100

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535891

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	09/09/03		mV	1	10	155	
					:			İ
·								
	:							
	·			ŀ				
	·							
								•
·								
]	ļ	

Sample Report Summary

Client Sample No.

IDOLADSFW12

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535917

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
QSOA	Redox Potential D1498	08/27/03		mV	1	10	145	
İ						İ		
	,							
								ŀ
ĺ								
·								
		1]				

Sample Report Summary

Client Sample No.

IDOLPDSFW13

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535919

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	08/27/03		mV	1	10	162	
							• •	
:								
·								
				:				
·								

Sample Report Summary

Client Sample No.

IDOLSTPW05

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535921

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	08/27/03		mV	1	10	170	
:								
							:	
								-
			·					
:			· .					
							•	

Sample Report Summary

Client Sample No.

IDOLSTSFW05

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535923

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
QSOA	Redox Potential D1498	08/27/03	Daton	mV	1	10	169	- Guai.
	. John Collins P. 199				-			
,								
	•							
		•						
·								
		<u>:</u> 3						

ASTM Method D1498: Standard Practice for Oxidation-Reduction Potential of Water

Client Code:	EASEAT	Analysis Date:	8/27/2003
ETR:	95017	Analysis Time: _	14:59
SDG:	IDW001	Analyst: _	DJP

Oxidation-Reduction Potential Probe Calibration Check

Calibration Solution	Reading 1 (mV)	Reading 2 (mV)	Temp. (°C)
100 mL pH 4 buffer + 1.0g Quinhydrone	290	288	22.0
100 mL pH 7 buffer + 1.0g Quinhydrone	119	118	22.0

^{*}Silver/Siver Chloride Reference Electrode used

Field Sample Oxidation-Reduction Potential Determinations

Laboratory Number	Temp. (°C)	Reading 1 (mV)	Reading 2 (mV)	Oxidation- Reduction Potential (ORP) in mV
535917	23.0	147	142	145
535919	23.0	162	161	162
535921	23.0	171	168	170
535923	23.0	169	169	169
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	1000			

ASTM Method D1498: Standard Practice for Oxidation-Reduction Potential of Water

Client Code:	EASEAT	Analysis Date:	9/9/2003
ETR:	95013	Analysis Time:	13:05
SDG:	IDW001	Analyst:	DJP

Oxidation-Reduction Potential Probe Calibration Check

Calibration Solution	Reading 1 (mV)	Reading 2 (mV)	Temp. (°C)
100 mL pH 4 buffer + 1.0g Quinhydrone	293	289	22.0
100 mL pH 7 buffer + 1.0g Quinhydrone	115	117	22.0

^{*}Silver/Silver Chloride Reference Electrode used

Field Sample Oxidation-Reduction Potential Determinations

Laboratory			-	Oxidation- Reduction Potential (ORP)
Number	Temp. (°C)	Reading 1 (mV)	Reading 2 (mV)	in mV
535879	23.0	160	158	159
535881	23.0	161	158	160
535883	23.0	158	157	158
535885	23.0	158	156	157
535885DP	23.0	155	154	155
535887	23.0	156	154	155
535889	23.0	158	157	158
535889DP	23.0	155	155	155
535891	23.0	156	153	155

Sample Data Summary Package For Wet Chemistry

Sample Report Summary

Client Sample No.

IDOLPDSFW14

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535879

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03	Daton	umhos/cm	1	0.000	371	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	220	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	318	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	4	2.0	79.2	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	23.6	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	υ
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	142	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	142	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	4	20.0	58.6	
	Corrosivity by pH	07/28/03	521100007571	pH Units	1	0.000	7.4	
9040B			BLKHA0808A	mg/L	1	2.0	224	
QSIA	Hardness, Post preserved	08/08/03	BLKHAU8U8A	mg/L	1	2.0	224	
								ļ

Sample Report Summary

Client Sample No.

IDOLSTSFW06

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535881

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm		0.000	451	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	272	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	295	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	. 1	0.56	19.8	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	5.0	U
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	υ
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L.	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	254	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	254	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	18.1	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.4	

Sample Report Summary

Client Sample No.

IDOLSTPW06

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535883

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	423	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	264	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	281	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L.	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	232	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	232	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	19.1	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.2	
								1
			i,					
							ļ	

Sample Report Summary

Client Sample No.

IDOLSTPW07

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535885

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	399	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	216	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	275	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	5.4	
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	177	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	182	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	44.9	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	8.0	
		,						

Sample Report Summary

Client Sample No.

IDOLSTPW07100

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535887

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	406	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	224	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	275	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	υ
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	6.4	
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	175	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	181	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	44.2	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	8.2	
				1			,	1

Sample Report Summary

Client Sample No.

IDOLSTSFW07

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535889

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	400	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	216	
160.1	Total Dissolved Solids	07/29/03	BLKD\$0729B	mg/L	1	5.0	286	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	1	0.50	8.4	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	5.0	υ
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	υ
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	7.7	
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	175	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	183	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	43.0	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	8.2	:
			,					
		,						
					•			
						:		

Sample Report Summary

Client Sample No.

IDOLSTSFW07100

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535891

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	401	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	212	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	268	
160.2	Total Suspended Solids /	07/29/03	BLKSS0729A	mg/L	1	0.50	13.0	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	5.0	U
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	4.2	
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	177	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1 .	1.0	181	
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	2	10.0	46.3	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	8.2	
				:				

Sample Report Summary

Client Sample No.

IDOLADSFW12

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535917

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm		0.000	1150	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	860	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	945	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	5	2.5	186	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	18.5	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	341	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	341	
375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	50	250	391	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.5	
	,							
1								

Sample Report Summary

Client Sample No.

IDOLPDSFW13

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535919

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03	Daten	umhos/cm	1	0.000	403	- Quui.
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	460	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	283	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	2	1.0	22.8	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	5.0	U
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	145	
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	1	1.0	145	
375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	5	25.0	69.0	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.6	
į.								
		:				I		į
						:		
	}			I		l	l	i

Sample Report Summary

Client Sample No.

IDOLSTPW05

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535921

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03	Daton	umhos/cm	1	0.000	454	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	580	
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	1	5.0	312	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	1.0	υ
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	1.0	υ
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	186	
310.1	Total Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	186	
375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	5	25.0	58.8	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.3	

Sample Report Summary

Client Sample No.

IDOLSTSFW05

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535923

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
120.1	Conductivity (umhos/cm)	08/12/03		umhos/cm	1	0.000	210	
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	1	2.0	500	
160.1	Total Dissolved Solids	09/02/03	BLKDS0902A	mg/L	1	5.0	300	
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	8	4.2	236	
160.4	Volatile Suspended Solids	07/29/03		mg/L	1	5.0	25.8	
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	1.0	U
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	1.0	U
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	192	
310.1	Total Alkalinity	07/31/03	BLKAL0731B	mg/L	1	1.0	192	
375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	5	25.0	126	
9040B	Corrosivity by pH	07/28/03		pH Units	1	0.000	7.4	
· ·								
								:

Method Blank Report Summary

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Matrix: WATER

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Conc.	Units	Qual.	DF	RL	Analytical Run Date	Analytical Batch
BLKAL0731A	310.1	Hydroxide Alkalinity	1.0	mg/L	U	1	1.0	07/31/03	BLKAL0731A
BLKAL0731A	310.1	Carbonate Alkalinity	1.0	mg/L	υ	1	1.0	07/31/03	BLKAL0731A
BLKAL0731A	310. 1	Bicarbonate Alkalinity	1.0	mg/L	υ	1	1.0	07/31/03	BLKAL0731A
BLKAL0731A	310.1	Total Alkalinity	1.0	mg/L	υ	1	1.0	07/31/03	BLKAL0731A
BLKAL0731B	310.1	Hydroxide Alkalinity	1.0	mg/L	U	1	1.0	07/31/03	BLKAL0731B
BLKAL0731B	310.1	Carbonate Alkalinity	1.0	mg/L	υ	1	1.0	07/31/03	BLKAL0731B
BLKAL0731B	310.1	Bicarbonate Alkalinity	1.0	mg/L	U	1	1.0	07/31/03	BLKAL0731B
BLKAL0731B	310.1	Total Alkalinity	1.0	mg/L	U	1	1.0	07/31/03	BLKAL0731B
BLKDS0729B	160.1	Total Dissolved Solids	5.0	mg/L	υ	1	5.0	07/29/03	BLKDS0729B
BLKDS0902A	160.1	Total Dissolved Solids	5.0	mg/L	υ	1	5.0	09/02/03	BLKDS0902A
BLKHA0808A	130.2	Total Hardness as CaCO3	2.0	mg/L	U	1	2.0	08/08/03	BLKHA0808A
BLKSS0729A	160.2	Total Suspended Solids	0.50	mg/L	υ	1	0.50	07/29/03	BLKSS0729A
BLKSU0813A	375.4	Sulfate	5.0	mg/L	υ	1	5.0	08/13/03	BLKSU0813A
BLKSU0819A	375.4	Sulfate	5.0	mg/L	U	1	5.0	08/19/03	BLKSU0819A
							<u> </u>		
			:						
	•								

Matrix Spike Sample Report Summary

Client Sample No.

IDOLSTPW07MS

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535885MS

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Matrix Res	ult	Sam Res Conc.	ult	Spike Added	% Recovery
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	530		216		302.5	103.8
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	240		182		54.7	106.0
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	72.2		44.9		40.0	68.2
										·
									•	
į									1	

* Control Limit for Percent Recovery is 75-125%, unless otherwise specified.

Matrix Spike Sample Report Summary

Client Sample No.

IDOLSTSFW07MS

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535889MS

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

Method	Parameter	Analytical Run Date	- Analytical Batch	Units	Matrix S Resi Conc.	ult	Sam Res Conc.	ult	Spike Added	% Recovery*
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	540		216		302.5	107.1
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	237		183		54.7	98.7
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	79.9		43.0		40.0	92.2
:										
i								ļ ·		
							·			
	·									
										-

* Control Limit for Percent Recovery is 75-125%, unless otherwise specified.

Duplicate Sample Report Summary

Client Sample No.

IDOLSTPW07REP

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535885DP

Matrix: WATER

Client: EASEAT

Date Received: 07/26/03

% Solids:

		Analytical	Analytical		Sam _l Resi		Dupli Sample	cate Result	
Method	Parameter	Run Date	Batch	Units	Conc.	Qual.	Conc.	Qual.	RPD*
120.1	Conductivity (umhos/cm)	08/12/03		umhos/c	399		402		1
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	216		220		2
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	275		276		0
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1.0	U	1.0	U	0
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	5.4		7.1		27
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	177		176		1
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	182		183		1
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	44.9		46.2		3
9040B	Corrosivity by pH	07/28/03		pH Units	8.0		8.1		1

* Control Limit for RPD is +/- 20%, unless otherwise specified.

Duplicate Sample Report Summary

Client Sample No.

IDOLSTSFW07REP

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535889DP

Matrix: WATER ...

Client: EASEAT

Date Received: 07/26/03

% Solids:

			A 1	•	Samp		Dupli		
Method	Parameter	Analytical Run Date	Analytical Batch	Units	Resu Conc.	Qual.	Sample Conc.	Qual.	RPD*
120.1	Conductivity (umhos/cm)	08/12/03		umhos/c	400		396		1
130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	216		216		0
160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	286		285		0
160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	8.4		8.4		0
160.4	Volatile Suspended Solids	07/29/03		mg/L	5.0	U	5.0	U	0
310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	1.0	U	1.0	U	0
310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	7.7		8.1		5
310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	175		175		0
310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	183		183		0
375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	43.0		47.2		9
9040B	Corrosivity by pH	07/28/03		pH Units	8.2		8.2		0

^{*} Control Limit for RPD is +/- 20%, unless otherwise specified.

Laboratory Control Sample Report Summary

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Matrix: WATER

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Analytical Run Date	Analytical Batch	Units	LCS Conc.	True Value	% Recovery*
LCS DS0729B	160.1	Total Dissolved Solids	07/29/03	BLKDS0729B	mg/L	50.0	50.0	100.0
LCS DS0902A	160.1	Total Dissolved Solids	09/02/03	BLKDS0902A	mg/L	51.0	50.0	102.0
LCSAL0731A	310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731A	mg/L	58.5	54.7000	107.0
LCSAL0731A	310.1	Carbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	58.5	54.7000	107.0
LCSAL0731A	310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731A	mg/L	58.5	54.7000	107.0
LCSAL0731A	310.1	Total Alkalinity	07/31/03	BLKAL0731A	mg/L	58.5	54.7000	107.0
LCSAL0731B	310.1	Hydroxide Alkalinity	07/31/03	BLKAL0731B	mg/L	56.4	54.7000	103.1
LCSAL0731B	310.1	Carbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	56.4	54.7000	103.1
LCSAL0731B	310.1	Bicarbonate Alkalinity	07/31/03	BLKAL0731B	mg/L	56.4	54.7000	103.1
LCSAL0731B	310.1	Total Alkalinity	07/31/03	BLKAL0731B	mg/L	56.4	54.7000	103.1
LCSCD0812A	120.1	Conductivity (umhos/cm)	08/12/03		umhos/c	1000	997.0000	100.3
LCSHA0808A	130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	124	121.0000	102.5
LCSPH0728A	9040B	Corrosivity by pH	07/28/03		pH Units	6.0	6.0000	100.5
LCSSS0729A	160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	502	500	100.4
LCSSU0813A	375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	9.2	10	92.0
LCSSU0819A	375.4	Sulfate	08/19/03	BLKSU0819A	mg/L	9.3	10.0	93.0
				· i				

^{*} Control Limit for Percent Recovery is 80-120%, unless otherwise specified.

Laboratory Control Sample Duplicate Report Summary

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDW001

Lab Code: STLVT

Case No.: 23046

Matrix: WATER

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Analytical Run Date	Analytical Batch	Units	LCSD .	True Value	% Recovery*	RPD**
LCSD DS0902A	160.1	Total Dissolved Solids	09/02/03	BLKDS0902A	mg/L	51.0	50.0	102.0	0
LCSDHA0808A	130.2	Total Hardness as CaCO3	08/08/03	BLKHA0808A	mg/L	124	121.0000	102.5	0
LCSDPH0728A	9040B	Corrosivity by pH	07/28/03		pH Units	6.0	6.0000	100.3	0
LCSDSS0729A	160.2	Total Suspended Solids	07/29/03	BLKSS0729A	mg/L	498	500	99.6	1
LCSDSU0813A	375.4	Sulfate	08/13/03	BLKSU0813A	mg/L	9.3	10	93.0	1
								<u> </u>	
								<u> </u> 	
						:	•		

^{*} Control Limit for Percent Recovery is 80-120%, unless otherwise specified.
** Control Limit for RPD is +/- 20%, unless otherwise specified.

Sample Data Summary Package For Metals

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

ab Name: STL BURLINGTON	Contract: 23046	
b Code: STLVT Case No.: 2304	SAS No.: SDG 1	No.: IDW001
W No.: ILM04.1		
EPA Sample No.	Lab Sample ID.	
	535917	-
IDOLADSFW12	535917	
IDOLADSFW12F	535919	_
IDOLPDSFW13	535919	_
IDOLPDSFW13F	535920	
IDOLPDSFW14 IDOLPDSFW14F	535880	
IDOLEDSFW14F IDOLSTPW05	535000	_
IDOLSTPW05F	535922	_
IDOLSTPW05F	535883	
IDOLSTPW06F	535884	_
	535885	
IDOLSTPW07 IDOLSTPW07100	535887	-
IDOLSTPW07100F	535888	_
IDOLSTPW07D	535885DP	
IDOLSTPW07F	535886	
IDOLSTPW07FD	535886DP	
IDOLSTPW07FS	535886MS	_
IDOLSTPW07ES	535885MS	
IDOLSTSFW05	535923	_
IDOLSTSFW05F	535924	_
IDOLSTSFW06	535881	_
IDOLSTSFW06F	535882	_
IDOLSTSFW07	535889	
IDOLSTSFW07100	535891	
IDOLSTSFW07100F	535892	
IBOHS15FW071001		
ere ICP interelement corrections	applied?	Yes/No YES
ere ICP background corrections a If yes-were raw data generat		Yes/No YES
application of background co		Yes/No NO
nments:		
milerics.		
certify that this data package	is in compliance with the terms and c	onditions of the
ontract, both technically and fo	r completeness, for other than the co	inditions detailed
bove. Release of the data conta	ined in this hardcopy data package an	a in the
omputer-readable data submitted	on diskette has been authorized by th	e raporatorA
anager or the Manager's designee	, as verified by the following signat	ure.
gnature:	Name:	
	m: +1	
ate:	Title:	

COVER PAGE - IN

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

SAS No.:	_ SDG No.:	IDW001
Lab Sample I	D.	
	· · · · · · · · · · · · · · · · · · ·	
535889MS		
	•	
	•	
	Ye	es/No YES
	V	es/No YES
	Υe	es/No NO
	ms and cond	itions of the
liance with the ter	ms and cond n the condi	itions of the
liance with the ter	n the condi	tions detailed
liance with the ter ness, for other tha as hardcopy data pa	n the condi ckage and i	tions detailed n the
liance with the ter ness, for other tha is hardcopy data pa has been authoriz	n the condi ckage and i ed by the L	tions detailed n the aboratory
liance with the ter ness, for other tha as hardcopy data pa	n the condi ckage and i ed by the L	tions detailed n the aboratory
liance with the ter ness, for other tha is hardcopy data pa has been authoriz	n the condi ckage and i ed by the L	tions detailed n the aboratory
liance with the ter ness, for other that is hardcopy data pa has been authoriz ted by the followin	n the condi ckage and i ed by the L	tions detailed n the aboratory
	Lab Sample II 535889DP 535890DP 535890 535890MS	Lab Sample ID. 535889DP 535890DP 535890MS 535889MS 535889MS

COVER PAGE - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLADSFW12	

Lab Name: STL BURLINGTON	Contract:	23046	
Lab Code: STLVT Case No.:	23046 SAS No.:	SDG 1	No.: IDW001
Matrix (soil/water): WATER	Lab	Sample ID: 5359	17
Level (low/med): LOW	Dat	ce Received: 07/2	6/03

% Solids: 0.0

LOW

Level (low/med):

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	·Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1510			P
7440-36-0	Antimony	4.7	U	1	P
7440-38-2	Arsenic	399			P
7440-39-3	Barium	126	В	1	P
7440-41-7	Beryllium	0.20	U		P
7440-43-9	Cadmium	0.60	שן		P
7440-70-2	Calcium	186000	1		P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	6.1	В		P
7440-50-8	Copper	10.2	В		P
7439-89-6	Iron	37000	Ī	1	P
7439-92-1	Lead	3.3	Ī	1	P
7439-95-4	Magnesium	56200			P
7439-96-5	Manganese	1870			P
7439-97-6	Mercury	0.73			CV
7440-02-0	Nickel	2.1	טן		P
7440-09-7	Potassium	3450	B		P
7782-49-2	Selenium	3.4	טן	N	P
7440-22-4	Silver	2.2	ט	1	P
7440-23-5	Sodium	16500	1]	P
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	4.3	В		P
7440-66-6	Zinc	25.6		1	P
57-12-5	Cyanide	10.0	שן		AS

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLADSFW	12F

Lab Name:	STL BURLING	GTON	_ Contract:	23046		
Lab Code:	STLVT	Case No.: 230	SAS No.	:	SDG No.:	IDW001
Matrix (so	il/water):	WATER	La	b Sample ID:	535918	

% Solids: 0.0

Level (low/med):

LOW

Concentration Units (ug/L or mg/kg dry weight): UG/L

Date Received: 07/26/03

			1		1 7
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	32.5	В		P
7440-36-0	Antimony	4.7	U		P
7440-38-2	Arsenic	41.7			P
7440-39-3	Barium	63.5	В		P
7440-41-7	Beryllium	0.20	שן		P
7440-43-9	Cadmium	0.60	טן		P
7440-70-2	Calcium	175000			P
7440-47-3	Chromium	1.4	טן	}	P
7440-48-4	Cobalt	2.0	U		P
7440-50-8	Copper	2.4	שן	<u> </u>	P
7439-89-6	Iron	2020			P
7439-92-1	Lead	1.3	U		P
7439-95-4	Magnesium	53800]	P
7439-96-5	Manganese	941			P
7439-97-6	Mercury	0.10	טן		CV
7440-02-0	Nickel	2.1	טן		P
7440-09-7	Potassium	3040	В		P
7782-49-2	Selenium	3.4	ע	N	P
7440-22-4	Silver	2.2	טן		P
7440-23-5	Sodium	14600		1	P
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	2.0	טן	ļ	P
7440-66-6	Zinc	6.2	В	1	P

Color Before:	colorless	Clarity Before:	clear	Texture: _	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:		100			
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

II	OOLPDSFW13	

Lab Name:	STL BURLINGTON	4		Contract:	23046	<u> </u>	
Lab Code:	STLVT	Case No.:	23046	SAS No.:	· · · · · · · · · · · · · · · · · · ·	SDG No.:	IDW001
Matrix (so:	il/water): WA	TER		Lab	Sample ID:	535919	
Level (low,	/med): LOW			Dat	e Received:	07/26/03	

% Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	80.0	В		P
7440-36-0	Antimony	4.7	שן		P
7440-38-2	Arsenic	17.5			P
7440-39-3	Barium	82.1	В		P
7440-41-7	Beryllium	0.20	שן		P
7440-43-9	Cadmium	0.60	שן		P
7440-70-2	Calcium	53800			P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	2.0	ש		P
7440-50-8	Copper	3.0	B	1	P
7439-89-6	Iron	421			P
7439-92-1	Lead	1.3	U		P
7439-95-4	Magnesium	15600			P
7439-96-5	Manganese	168		1	P
7439-97-6	Mercury	0.10	טן		cv
7440-02-0	Nickel	2.1	טן	1	P
7440-09-7	Potassium	3200	В		P
7782-49-2	Selenium	3.4	ש	N	P
7440-22-4	Silver	2.2	שן		P
7440-23-5	Sodium	10000	I	1	P
7440-28-0	Thallium	5.7	U		P
7440-62-2	Vanadium	2.0	טן		P
7440-66-6	Zinc	5.9	В		P
57-12-5	Cyanide	10.0	טן		AS

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:				
. -				

INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.	
ID	OLPDSFW1	3 F	

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535920
Level (low/med): LOW	Date Received:	07/26/03
0 0-1:1 0 0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	36.0	В		P
7440-36-0	Antimony	4.7	שן	1	P
7440-38-2	Arsenic	14.3			P
7440-39-3	Barium	78.9	В		P
7440-41-7	Beryllium	0.20	U		P
7440-43-9	Cadmium	0.60	ען		P
7440-70-2	Calcium	53800			P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	2.0	U		P
7440-50-8	Copper	3.6	В		P
7439-89-6	Iron	178			P
7439-92-1	Lead	1.4	В	1	P
7439-95-4	Magnesium	15600	<u> </u>	<u> </u>	P
7439-96-5	Manganese	139		<u> </u>	P
7439-97-6	Mercury	0.10	טן		cv
7440-02-0	Nickel	2.1	ΙŪ		P
7440-09-7	Potassium	3200	В	<u> </u>	P
7782-49-2	Selenium	3.4	ע	N	P
7440-22-4	Silver	2.2	Ιū		P
7440-23-5	Sodium	12400			P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	2.0	שן		P
7440-66-6	Zinc	16.4	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:	····			

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLPDSFW14

	22046	
Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535879
Level (low/med): LOW	Date Received:	07/26/03
% Solids: 0.0		

CAS No.	Analyte	Concentration	С	Ŏ	М
7429-90-5	Aluminum	473			P
7440-36-0	Antimony	4.7	Įυ		P
7440-38-2	Arsenic	12.2	1		P
7440-39-3	Barium	111	B	1	P
7440-41-7	Beryllium	0.20	טן		P
7440-43-9	Cadmium	2.2	В		P
7440-70-2	Calcium	49800		<u> </u>	P
7440-47-3	Chromium	1.4	Įυ		P
7440-48-4	Cobalt	2.0	טן		P
7440-50-8	Copper	8.3	B		P
7439-89-6	Iron	2150	1	ļ	P
7439-92-1	Lead	40.4	T		P
7439-95-4	Magnesium	15300		l	P
7439-96-5	Manganese	167	1		P
7439-97-6	Mercury	0.10	ט		CV
7440-02-0	Nickel	2.1	ן ט		P
7440-09-7	Potassium	4900	В	l	P
7782-49-2	Selenium	3.4	ש	N	P
7440-22-4	Silver	2.2	U		P
7440-23-5	Sodium	9620		<u> </u>	P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	170		1	P
57-12-5	Cyanide	10.0	U		AS

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:				
-				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLPDSFW14F

Lab Name: S	STL BURLINGTON	Contract: 23046	
Lab Code: §	Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soi	l/water): WATER	Lab Sample ID:	535880
Level (low/	med): LOW	Date Received:	07/26/03
% Solids: (; 0 : 0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	23.6	שן		P
7440-36-0	Antimony	4.7	ប្រ		P
7440-38-2	Arsenic	4.8	U	1	P
7440-39-3	Barium	83.9	В		P
7440-41-7	Beryllium	0.20	שן		P
7440-43-9	Cadmium	0.60	טן		P
7440-70-2	Calcium	47000			P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	2.0	טן		P
7440-50-8	Copper	6.2	B		P
7439-89-6	Iron	214			P
7439-92-1	Lead	1.3	וט		P
7439-95-4	Magnesium	15300			P
7439-96-5	Manganese	29.4			P
7439-97-6	Mercury	0.10	שן		CV
7440-02-0	Nickel	2.1	שן		P
7440-09-7	Potassium	5320	-	1	P
7782-49-2	Selenium	3.4	טן	N	P
7440-22-4	Silver	2.2	ט	1	P
7440-23-5	Sodium	10400		1	P
7440-28-0	Thallium	5.7	טן	1	P
7440-62-2	Vanadium	2.0	ט	1	P
7440-66-6	Zinc	41.8			P

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:			1.00	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTPW05

Lab Name:	STL BURI	LINGTON	Contra			_		
Lab Code:	STLVT	_ Case No.:	23046 SAS	No.:	_ SD	G No.:	IDW001	
Matrix (so	il/water): WATER		Lab Sample II): <u>53</u>	5921		
Level (low	/med):	LOW		Date Received	l: <u>07</u>	/26/03		
% Solids:	0.0							
			Unite /ug/I or	mg/kg dry weig	h t) · II	G/T.		
		Concentration	Onics (ug/L or	mg/kg dry werg		<u> </u>	 ·	
		CAS No.	Analyte	Concentration	С	Q M		
		57-12-5	Cyanide	10.0	Ū	AS	<u> </u> 	
		3, 12 3	Jogania	1	<u>'</u> '		<u>-</u> '	
Color Be	efore:	C	larity Before:		Text	ure:		
	: -		1		^ ~ 	facts:		
Color A	tter:	C	larity After:		MEU	LIAULS		
Comments	s:							

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTPW05F

Lab Name:	STL BURLING	GTON		Contract:	23046			
Lab Code:	STLVT	Case No.:	23046	SAS No.	<u> </u>	SDG No.:	IDW001	-
Matrix (so	il/water):	WATER		Lal	Sample ID:	535922		
Level (low	/med): <u>LO</u>	<u> </u>		Da	te Received:	07/26/03	<u></u>	

% Solids: 0.0

		<u> </u>	т	Υ	т і
CAS No.	Analyte	Concentration	С	Q	M
7429-90-5	Aluminum	113	В		P
7440-36-0	Antimony	4.7	טן		P
7440-38-2	Arsenic	8.9	В		P
7440-39-3	Barium	108	В	1	P
7440-41-7	Beryllium	0.20	լս	<u> </u>	P
7440-43-9	Cadmium	1.6	В	1	P
7440-70-2	Calcium	64100	<u> </u>	<u> </u>	P
7440-47-3	Chromium	1.4	lα		P
7440-48-4	Cobalt	2.0	Ju	1	P
7440-50-8	Copper	5.2	В		P
7439-89-6	Iron	415	<u> </u>	<u> </u>	P
7439-92-1	Lead	62.5	<u> </u>	<u> </u>	l P
7439-95-4	Magnesium	16600			P
7439-96-5	Manganese	47.7		<u> </u>	P
7439-97-6	Mercury	0.10	ען	<u> </u>	cv
7440-02-0	Nickel	2.1	טן	<u> </u>	P
7440-09-7	Potassium	3570	B	<u> </u>	P
7782-49-2	Selenium	3.4	U	N	P
7440-22-4	Silver	2.2	ע		P
7440-23-5	Sodium	9770		1	P
7440-28-0	Thallium	5.7	שן	1	P
7440-62-2	Vanadium	2.0	שן	<u> </u>	P
7440-66-6	Zinc	240]	P

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:	And the second s			
-				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL BURL	INGTON	Contra	ct: <u>23046</u>		
Lab Code:	STLVT	Case No.:	23046 SAS	No.:	SDG No.:	IDW001
Matrix (so	il/water)	: WATER		Lab Sample ID:	535883	· <u>······</u>
Level (low	/med):	LOW		Date Received:	07/26/03	
% Solids:	0.0					
		Concentration	Units (ug/L or	mg/kg dry weight): UG/L	
			,	3. 3 1		- 1
		CAS No.	Analyte	Concentration C	QM	
		57-12-5	Cyanide	10.0	AS	<u>j</u>
					•	
Color Be	efore:	c	larity Before:		Texture:	
Color A	fter:	C	larity After:		Artifacts:	
00101 111			-			
Comments	s:		***************************************			

Form I - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535884
Level (low/med): LOW	Date Received:	07/26/03
% Solids: 0.0		

			Τ	1	
CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	38.6	В		P
7440-36-0	Antimony	4.7	Įΰ		P
7440-38-2	Arsenic	6.3	В		P
7440-39-3	Barium	142	В		P
7440-41-7	Beryllium	0.20	U]	P
7440-43-9	Cadmium	0.60	טן		P
7440-70-2	Calcium	67800		<u> </u>	P
7440-47-3	Chromium	1.4	ր		P
7440-48-4	Cobalt	2.0	ט		P
7440-50-8	Copper	2.6	В		P
7439-89-6	Iron	1820		<u> </u>	P
7439-92-1	Lead	1.3	שן	<u> </u>	P
7439-95-4	Magnesium	16400	1	<u> </u>	P
7439-96-5	Manganese	456		1	P
7439-97-6	Mercury	0.10	U	<u> </u>	cv
7440-02-0	Nickel	2.1	טן		P
7440-09-7	Potassium	3560	В		P
7782-49-2	Selenium	3.4	טן	N	P
7440-22-4	Silver	2.2	טן	1	P
7440-23-5	Sodium	8250	<u> </u>	1	P
7440-28-0	Thallium	5.7	Įυ	<u> </u>	P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	12.9	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments: -					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTPW07

	amt propr	TATOMONI	0	22046				
Lab Name:				23046	CD/	- G No.:	IDW001	
Lab Code:		Case No.:	23046 SAS	3 No.:			IDWOOT	_
Matrix (so				Lab Sample II		5885	· · · · · · · · · · · · · · · · · · ·	
Level (low	/med):	TOM		Date Received	1: <u>07</u>	/26/03		
% Solids:	0.0	_						
		Concentration	Units (ug/L or	mg/kg dry weig	ht): <u>U</u>	G/L		
			T			0 W	1	
		CAS No.	Analyte	Concentration		Q M		
		57-12-5	Cyanide	10.0	ן ט	AS]	
•								
					•			
			•					
								•
Color Be	efore:	C1	larity Before:		Text	ure:		
Color Af	ter:	C1	larity After:		Arti	facts:		
_								
Comments	3: 							

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTPW07100

Name: S	STL BURLI	INGTON	Contra	ct: 23046	
Code: §	STLVT	Case No.	: <u>23046</u> SAS	No.:	SDG No.: IDW001
rix (soi	l/water):	: WATER	·	Lab Sample ID	535887
el (low/	med):	LOW		Date Received	: 07/26/03
olids: (0.0				
-		Concentration	Units (ug/L or	mg/kg dry weigh	t): UG/L
		Concenctacto			
		CAS No.	Analyte	Concentration	C Q M
		57-12-5	Cyanide	10.0	U AS
	• :				
	•				
Color Bef	ore:		Clarity Before:		Texture:
Color Aft	er:	C	Clarity After:		Artifacts:
	:		_		
omments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTPW07100F	

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535888
Level (low/med): LOW	Date Received:	07/26/03

Concentration Units (ug/L or mg/kg dry weight): UG/L

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	44.4	В		P
7440-36-0	Antimony	4.7	טן		P
7440-38-2	Arsenic	4.8	Ιū		P
7440-39-3	Barium	123	B	<u> </u>	P
7440-41-7	Beryllium	0.20	ען		P
7440-43-9	Cadmium	0.60	U	<u> </u>	P
7440-70-2	Calcium	60900	<u> </u>	<u> </u>	P
7440-47-3	Chromium	1.4	מן		P
7440-48-4	Cobalt	2.0	Ιū		P
7440-50-8	Copper	2.4	שן	<u> </u>	P
7439-89-6	Iron	88.4	В		P
7439-92-1	Lead	1.6	В		P
7439-95-4	Magnesium	14400			P
7439-96-5	Manganese	5.2	В	[P
7439-97-6	Mercury	0.10	שן		CV
7440-02-0	Nickel	2.1	ען		P
7440-09-7	Potassium	2970	В		P
7782-49-2	Selenium	3.4	ען	и	P
7440-22-4	Silver	2.2	שן		P
7440-23-5	Sodium	10400			P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	2.0	טן	1	P
7440-66-6	Zinc	5.8	В	<u> </u>	P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTPW07F

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (so:	il/water): WATER	Lab Sample ID:	535886
Level (low,	/med): LOW	Date Received:	07/26/03
% Solids:	0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	30.9	В		P
7440-36-0	Antimony	4.7	טן		P
7440-38-2	Arsenic	4.8	U	[P
7440-39-3	Barium	125	В	1	P
7440-41-7	Beryllium	0.20	טן	<u> </u>	P
7440-43-9	Cadmium	0.60	שן	<u> </u>	P
7440-70-2	Calcium	62100	<u> </u>	·	P
7440-47-3	Chromium	1.4	מן		P
7440-48-4	Cobalt	2.0	U		P
7440-50-8	Copper	2.4	טן	<u> </u>	P
7439-89-6	Iron	65.6	B	<u> </u>	P
7439-92-1	Lead	1.5	В	<u> </u>	P
7439-95-4	Magnesium	14700		<u> </u>	P
7439-96-5	Manganese	29.9		<u>l </u>	P
7439-97-6	Mercury	0.10	Մ	<u> </u>	cv
7440-02-0	Nickel	2.1	ען	1	P
7440-09-7	Potassium	2940	B	<u> </u>	P
7782-49-2	Selenium	3.4	ΙŪ	И	P
7440-22-4	Silver	2.2	ען	1	P
7440-23-5	Sodium	10200	1	<u> </u>	P
7440-28-0	Thallium	5.7	U	1	P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	11.6	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					
_ _					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTSFW05

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535923
Level (low/med): LOW	Date Received:	07/26/03
% Solids: 0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3940			P
7440-36-0	Antimony	5.8	В		P
7440-38-2	Arsenic	61.2	1	}	P
7440-39-3	Barium	369			P
7440-41-7	Beryllium	0.58	В		P
7440-43-9	Cadmium	17.2			P
7440-70-2	Calcium	73300			P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	11.1	В		P
7440-50-8	Copper	97.3		1	P
7439-89-6	Iron	10900		1	P
7439-92-1	Lead	1540			P
7439-95-4	Magnesium	18400			P
7439-96-5	Manganese	2440	1	<u> </u>	P
7439-97-6	Mercury	0.44		1	cv
7440-02-0	Nickel	9.7	B		P
7440-09-7	Potassium	4880	B		P
7782-49-2	Selenium	3.4	ט	N	P
7440-22-4	Silver	2.2	שן		P
7440-23-5	Sodium	10100	1	1	P
7440-28-0	Thallium	5.7	ր		P
7440-62-2	Vanadium	11.7	В		P
7440-66-6	Zinc	1550		1	P
57-12-5	Cyanide	10.0	ט		AS

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:	****			
-				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTSFW05F

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (so	il/water): WATER	Lab Sample ID:	535924
Level (low	/med): LOW	Date Received:	07/26/03
% Solids:	0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	26.4	В		P
7440-36-0	Antimony	4.7	שן		P
7440-38-2	Arsenic	8.3	В		P .
7440-39-3	Barium	113	В		P
7440-41-7	Beryllium	0.20	שן		P
7440-43-9	Cadmium	1.2	В		P
7440-70-2	Calcium	64500			P
7440-47-3	Chromium	1.4	U		P
7440-48-4	Cobalt	2.0	U		P
7440-50-8	Copper	3.5	В		P
7439-89-6	Iron	87.0	В	<u> </u>	P
7439-92-1	Lead	4.5	1		P
7439-95-4	Magnesium	16500		1	P
7439-96-5	Manganese	100			P
7439-97-6	Mercury	0.10	טן	1	CV
7440-02-0	Nickel	2.1	ט		l P
7440-09-7	Potassium	3950	В	1	P
7782-49-2	Selenium	3.4	ען	N	P
7440-22-4	Silver	2.2	Մ	<u> </u>	P
7440-23-5	Sodium	9900			P
7440-28-0	Thallium	5.7	טן		l P
7440-62-2	Vanadium	2.0	שן		P
7440-66-6	Zinc	162	1		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTSF	₩06	

Lab Name:	STL BURLING	TON		Contract:	23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.:	IDW001
Matrix (so	il/water):	WATER		Lab	Sample ID:	535881	
Level (low	/med): <u>LO</u>	W		Dat	e Received:	07/26/03	

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	448	1		P
7440-36-0	Antimony	4.7	Ū		P
7440-38-2	Arsenic	4.8	שן		P
7440-39-3	Barium	186	B		P
7440-41-7	Beryllium	0.20	Įυ		P
7440-43-9	Cadmium	0.67	В	1	P
7440-70-2	Calcium	72200		l	P
7440-47-3	Chromium	1.4	שן	l	P
7440-48-4	Cobalt	2.0	U	l	P
7440-50-8	Copper	4.9	В		P
7439-89-6	Iron	572			P
7439-92-1	Lead	11.1			P
7439-95-4	Magnesium	17300	1		P
7439-96-5	Manganese	57.5			P
7439-97-6	Mercury	0.10	ľū		cv
7440-02-0	Nickel	2.1	טן		P
7440-09-7	Potassium	3410	В		P
7782-49-2	Selenium	3.4	שן	N	P
7440-22-4	Silver	2.2	ע		P
7440-23-5	Sodium	7190			P
7440-28-0	Thallium	5.7	Ιū		P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	39.7			P
57-12-5	Cyanide	10.0	שן		AS

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts: _	
Comments:	J _{an} gggon, and Allerton, and	AL PAGE			
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTSFW06F	

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	<u>STLVT</u> Case No.: <u>23046</u>	SAS No.:	SDG No.: IDW001
Matrix (so	il/water): WATER	Lab Sample ID:	535882
Level (low	/med): LOW	Date Received:	07/26/03

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	23.6	U		P
7440-36-0	Antimony	4.7	U		P
7440-38-2	Arsenic	4.8	ע		P
7440-39-3	Barium	157	В	<u> </u>	P
7440-41-7	Beryllium	0.20	ប		P
7440-43-9	Cadmium	0.60	U		P
7440-70-2	Calcium	72100			P
7440-47-3	Chromium	1.4	U		P
7440-48-4	Cobalt	2.0	U	<u> </u>	P
7440-50-8	Copper	3.6	B	<u> </u>	P
7439-89-6	Iron	73.5	В		P
7439-92-1	Lead	1.3	U	1	P
7439-95-4	Magnesium	17500			P
7439-96-5	Manganese	0.70	ען		P
7439-97-6	Mercury	0.10	U		cv
7440-02-0	Nickel	2.1	שן	<u> </u>	P
7440-09-7	Potassium	3120	В		P
7782-49-2	Selenium	3.4	טן	N	P
7440-22-4	Silver	2.2	ען		P
7440-23-5	Sodium	7630			P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	2.0	ט		P
7440-66-6	Zinc	13.4	В		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTSFW07

Lab Name:	STL BURLI	NGTON	Con	tract:	23046				
Lab Code:	STLVT	Case No.:	23046	SAS No	. :		SDG N	o.:	II
Matrix (so	oil/water):	WATER		La	ab Sample II) :	53588	9	
Level (low	/med):]	OM		Da	ate Receive	1 :	07/26	/03	
% Solids:	0.0								
		.		an m=/	ka dan weja	h+1	· 13C/T.		
	(Concentration '	Units (ug/L	or mg/	rd ara merd	116)	. 00/11		-
	Ī	CAS No.	Analyte	Con	centration	С	Q	М	
						<u> </u>		<u> </u>	1
		7429-90-5	Aluminum		91.7	B	<u> </u>	P	<u> </u>
	į	7440-36-0	Antimony		4.7	U		P	1
	Ì	7440-38-2	Arsenic	l	4.8	שן		P]
	İ	7440-39-3	Barium		121	В		P	Ī
		7440-41-7	Beryllium	l	0.20	U		P]
	j	7440-43-9	Cadmium	1	0.60	U		P	<u>]</u>
	İ	7440-70-2	Calcium	1	60800	1		P	

7440-47-3

7440-48-4

7440-50-8

7439-89-6

7439-92-1

7439-95-4

7439-96-5

7439-97-6

Chromium

Cobalt

Copper

Iron

Lead

Magnesium

Manganese

Mercury

2.1 U P 7440-02-0 Nickel В 2840 Ρ 7440-09-7 Potassium U N P 3.4 7782-49-2 Selenium 2.2 U P 7440-22-4 Silver 10000 ₽ 7440-23-5 Sodium U 5.7 ₽ 7440-28-0 Thallium U P 7440-62-2 Vanadium 2.0 B P 4.7 Zinc 7440-66-6 10.0 U AS 57-12-5 Cyanide

U

1.4

168

1.3

9.3

0.10

B

U

14400

2.0 😈

2.4 U

₽

₽

P

P

P

P

P

CV

Color Before:	colorless	Clarity Before:	clear	Texture:	<u> </u>
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					
_					<u> </u>
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTSFW07100	

Lab Name:	STL BURLINGTON	Contract: 23046		_	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDC	G No.:	IDW001
Matrix (so	il/water): WATER	Lab Sample	ID: <u>53</u>	5891	
Level (low	/med): LOW	Date Recei	ved: <u>07</u>	/26/03	
% Solids:	0.0				

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	59.2	В		P
7440-36-0	Antimony	4.7	ΙŪ.	1	P
7440-38-2	Arsenic	4.8	U	1	P
7440-39-3	Barium	119	В		P
7440-41-7	Beryllium	0.20	U		P
7440-43-9	Cadmium	0.60	שן		P
7440-70-2	Calcium	59900			P
7440-47-3	Chromium	1.4	טן		P
7440-48-4	Cobalt	2.0	U		P
7440-50-8	Copper	2.4	טן		P
7439-89-6	Iron	120			P
7439-92-1	Lead	1.3	U		P
7439-95-4	Magnesium	14200			P
7439-96-5	Manganese	2.2	B	1	P
7439-97-6	Mercury	0.10	שן	l	CV
7440-02-0	Nickel	2.1	שן	!	P
7440-09-7	Potassium	2860	В	1	P
7782-49-2	Selenium	3.4	Įυ	N	P
7440-22-4	Silver	2.2	U		P
7440-23-5	Sodium	10100	1	1	P
7440-28-0	Thallium	5.7	שן		P
7440-62-2	Vanadium	2.0	טן		P
7440-66-6	Zinc	1.9	В		P
57-12-5	Cyanide	10.0	שן		AS

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:				
- -				
-				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTSFW07100F

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Lab Sample ID:	535892
Level (low/med): LOW	Date Received:	07/26/03
% Solids: 0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

Concentration С Q М Analyte CAS No. 58.3 B ₽ Aluminum 7429-90-5 U P 7440-36-0 Antimony 4.7 5.2 B P 7440-38-2 Arsenic 120 |B P 7440-39-3 Barium 0.20 U P Beryllium 7440-41-7 U Р 0.60 7440-43-9 Cadmium 60000 ₽ 7440-70-2 Calcium U P 7440-47-3 Chromium 1.4 U P 2.0 7440-48-4 Cobalt 2.6 B ₽ 7440-50-8 Copper 118 P 7439-89-6 Iron 1.3 U P 7439-92-1 Lead 14200 P 7439-95-4 Magnesium 5.7 B P 7439-96-5 Manganese 0.10 U CV 7439-97-6 Mercury U P 2.1 7440-02-0 Nickel 2860 B ₽ 7440-09-7 Potassium 3.4 U N P 7782-49-2 Selenium U P 2.2 7440-22-4 Silver

Sodium

Thallium

Vanadium

Zinc

7440-23-5

7440-28-0

7440-62-2

7440-66-6

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:		***		

10000

5.7 U

3.4

2.0 | 0 |

B

P

P

P

Ρ

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	_
IDOLSTSFW07F	

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (so:	il/water): WATER	Lab Sample ID:	535890
Level (low,	/med): LOW	Date Received:	07/26/03

% Solids: 0.0

	T				
CAS No.	Analyte	Concentration	С	Ω	M
7429-90-5	Aluminum	23.6	U		P
7440-36-0	Antimony	4.7	שן		P
7440-38-2	Arsenic	4.8	שן	<u> </u>	P
7440-39-3	Barium	122	В		P
7440-41-7	Beryllium	0.20	שן		P
7440-43-9	Cadmium	0.60	ט		P
7440-70-2	Calcium	62300	<u> </u>		P
7440-47-3	Chromium	1.4	שן		P
7440-48-4	Cobalt	2.0	U	<u> </u>	P
7440-50-8	Copper	2.4	ט		P
7439-89-6	Iron	55.6	В		P
7439-92-1	Lead	1.3	ע		P
7439-95-4	Magnesium	14800			P
7439-96-5	Manganese	0.70	U		P
7439-97-6	Mercury	0.10	ש		cv
7440-02-0	Nickel	2.1	טן	<u> </u>	P
7440-09-7	Potassium	2950	В	<u> </u>	P
7782-49-2	Selenium	3.4	U	N	P
7440-22-4	Silver	2.2	טן		l P
7440-23-5	Sodium	10300			P
7440-28-0	Thallium	5.7	ט		P
7440-62-2	Vanadium	2.0	U	<u> </u>	P
7440-66-6	Zinc	4.4	В	<u> </u>	P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:			<u> </u>		
_					
_					

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGT	ON		Contract: 23046			
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDW001	
Initial Ca	alibration So	urce: Inorga	nic Ventu	res/Fisher	· · · · · · · · · · · · · · · · · · ·		
Continuing	g Calibration	Source: SPE	X/Fisher				

	Initial (Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Cyanide	120.0	125.68 104.7	150.0	150.32	100.2	150.0	08 100.1	AS	

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Nam	ne:	STL BURLINGTO	N		Cc	ontract: 23046		
Lab Coo	de:	STLVT	Case	No.:	23046	SAS No.:	SDG No.:	IDW001
Initial	l Cal	ibration Sou	rce:	Inorga	nic Venture	s/Fisher		

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Cyanide			150.0	150.68	100.5	150.6	68 100.5	AS

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name: _	STL BURLINGTO)N	(Contract: 23046		
Lab	Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDW001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial (Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Cyanide	120.0	129.20 107.7	150.0	148.90	99.3	147.6	0 98.4	AS	

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLIN	GTON	_Contract: <u>23046</u>	
Lab Code: STLVT	Case No.: 23046	SAS No.:	SDG No.: IDW001
Initial Calibration	Source: Inorganic Ventu	ıres/Fisher	
Continuing Calibrati	on Source: SPEX/Fisher		
Continuing Calibrati			

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Cyanide			150.0	149.50	99.7	151.1	100.8	B AS	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

······································	Initial	Calibration	n.	1	Continuing	Calibra	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum	26000.0	25900.00	99.6	30200.0	29940.00	99.1	30350.00	100.5	Р
Antimony	250.0	249.00	99.6	300.0	300.50	100.2	305.30	101.8	P
Arsenic	250.0	249.20	99.7	100.0	100.60	100.6	99.55	99.6	Р
Barium	500.0	494.90	99.0	200.0	198.70	99.4	201.80	100.9	P
Beryllium	500.0	503.50	100.7	100.0	98.69	98.7	100.10	100.1	P
Cadmium	500.0	492.40	98.5	100.0	98.42	98.4	99.34	99.3	P
Calcium	25000.0	25210.00	100.8	30200.0	30020.00	99.4	30270.00	100.2	Р
Chromium	500.0	499.30	99.9	200.0	197.30	98.6	199.10	99.6	Р
Cobalt	500.0	491.50	98.3	200.0	196.60	98.3	199.00	99.5	Р
Copper	500.0	503.00	100.6	200.0	202.50	101.2	205.30	102.6	P
Iron	25500.0	26000.00	102.0	30200.0	29940.00	99.1	30290.00	100.3	Р
Lead	1000.0	1003.00	100.3	400.0	393.30	98.3	399.50	99.9	Р
Magnesium	25000.0	25150.00	100.6	30200.0	29770.00	98.6	30110.00	99.7	P
Manganese	500.0	487.50	97.5	200.0	189.50	94.8	192.00	96.0	P
Nickel	500.0	496.20	99.2	200.0	196.70	98.4	199.40	99.7	P
Potassium	25000.0	25780.00	103.1	30200.0	30940.00	102.5	31410.00	104.0	P
Selenium	250.0	243.90	97.6	100.0	99.63	99.6	101.30	101.3	P
Silver	500.0	498.60	99.7	100.0	99.80	99.8	101.90	101.9	Р
Sodium	1 25000.0	24610.00	98.4	30200.0	28990.00	96.0	29220.00	96.8	Р
Thallium	250.0	239.00	95.6	100.0	103.80	103.8	104.20	104.2	P
Vanadium	500.0	495.90	99.2	200.0	197.60	98.8	200.10	100.0	P
Zinc	500.0	501.20	100.2	200.0	200.40	100.2	203.60	101.8	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGT	ON	(Contract: 23	046		
Lab Code:			23046	SAS No.:		SDG No.:	IDW001
Initial Ca	alibration Sou	urce: Inorga	nic Ventu	res/Fisher			
Continuing	g Calibration	Source: SPE	X/Fisher				

	Initial (Calibratio	on	C	Continuing	Calibra	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum				30200.0	30400.00		30190.00		
Antimony				300.0	303.30			101.9	
Arsenic	1			100.0	102.70		99.42		•—•
Barium			1	200.0	202.10	101.0	200.60		
Beryllium	i		İ	100.0	99.70	99.7	99.80		
Cadmium	i		Ī	100.0	98.30	98.3	98.50	98.5	Р
Calcium			1	30200.0	30060.00	99.5	30130.00	99.8	P
Chromium	<u> </u>			200.0	198.50	99.2	198.20	99.1	P
Cobalt	<u> </u>			200.0	198.60	99.3	198.30	99.2	P
	1		1	200.0	205.30	102.6	204.00	102.0	Р
Copper	<u> </u>		\ 	30200.0	30120.00	99.7	30110.00	99.7	Р
Iron			<u> </u>	400.0	396.30		396.40	99.1	Р
Lead	<u> </u>		<u> </u>	30200.0	29920.00		29950.00	99.2	Р
Magnesium			<u> </u>	200.0	191.70		191.40	95.7	P
Manganese			1	200.0	198.10		197.70	98.8	P
Nickel	1		<u></u>	30200.0	31530.00		31320.00	103.7	P
Potassium	<u> </u>		 	100.0	96.38		100.60		
Selenium	<u> </u>		 	100.0	102.40			101.3	
Silver	<u> </u>			30200.0	29630.00		29390.00		
Sodium	<u> </u>					104.7	101.40		
Thallium			<u> </u>	100.0			<u> </u>		
Vanadium			<u> </u>	200.0	199.80				
Zinc				200.0	202.50	101.2	202.4	0 101.2	1

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLI	NGTON	<u> </u>	Contract: 23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDW001	
Initial C	alibration	Source: Inorga	nic Vent	cures/Fisher		
Continuin	g Calibrat:	ion Source: SPE	X/Fisher	c		

····	Initial C	alibrati	on	(Continuing	Calibra	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum				30200.0	30540.00	101.1			P
Antimony				300.0	305.70	101.9			Р
Arsenic				100.0	101.80	101.8			P
Barium				200.0	202.10	101.0			P
Beryllium				100.0	99.81	99.8			P
Cadmium	1			100.0	98.65	98.6			P
Calcium				30200.0	30230.00	100.1			P
Chromium				200.0	199.30	99.6		<u> </u>	P
Cobalt]			200.0	199.00	99.5			P
Copper	1			200.0	205.90	103.0			P
Iron				30200.0	30210.00	100.0			P
Lead				400.0	399.30	99.8			P
Magnesium			1	30200.0	30020.00	99.4			P
Manganese			1	200.0	191.90	96.0			P
Nickel	1		<u> </u>	200.0	198.60	99.3			P
Potassium				30200.0	31440.00	104.1			P
Selenium			ĺ	100.0	99.48	99.5			P
Silver	1		l	100.0	102.00	102.0			P
Sodium				30200.0	29710.00	98.4			P
Thallium				100.0	104.20	104.2			P
Vanadium				200.0	200.40	100.2			Р
Zinc	1			200.0	202.70	101.4			P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

 Lab Name:
 STL BURLINGTON
 Contract: 23046

 Lab Code:
 STLVT
 Case No.: 23046
 SAS No.: SDG No.: IDW001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial C	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Mercury	3.0	2.90 96.7	5.0	4.86	97.2	4.6	7 93.4	cv

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLI	NGTON		Contract: 23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDW	001
Initial Ca	alibration	Source: Inorga	nic Vent	tures/Fisher	·	
Continuin	g Calibrati	ion Source: SPE	X/Fisher	r		

	Initial	Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Mercury			5.0	4.40	88.0	4.7	4 94.8	CV	

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м	
Mercury	3.0	2.98 99.3	5.0	4.92	98.4	4.4	3 88.6	cv	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab 1	Name: _	STL BURLINGTO	N		Co	ntract: <u>2304</u>	.6	***
Lab	Code:	STLVT	Case	No.:	23046	SAS No.:	SDG No.:	IDW001
Init	ial Ca	libration Sou	rce:	Inorgai	nic Venture	s/Fisher		

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration							
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м		
Mercury			5.0	4.36	87.2			cv		

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL BURLING	TON		Contract: 23046	
Lab	Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDW001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Mercury	3.0	2.89 96.3	1.0	0.89	89.0	0.8	82 82.0	CV	

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTON			Contract: 23046	
Lab Code:	STLVT C	ase No.:	23046	SAS No.:	SDG No.: IDW001
Initial Ca	alibration Source	e: <u>Inorga</u>	nic Vent	cures/Fisher	
Continuin	g Calibration So	ource: SPE	X/Fisher		<u> </u>

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М	
Mercury			1.0	0.84	84.0	0.9	97.0	cv	

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGT	ON	_Contract: 23046		
Lab Code:	STLVT	Case No.: 23046	SAS No.:	SDG No.:	IDW001
Initial C	alibration So	urce: <u>Inorganic Vent</u>	ures/Fisher		
Continuin	ng Calibration	Source: SPEX/Fisher			
		Concen	tration Units: ug/L		

Continuing Calibration Initial Calibration М Analyte Found %R(1) True Found %R(1) Found %R(1) True 1.0 0.90 90.0 CV Mercury

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2B-IN CRDL STANDARD FOR AA AND ICP

Lab	Name:	STL	BURLINGTON	Contract: 23046
-----	-------	-----	------------	-----------------

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

					CRDL Star	ndard	for ICP	
				In:	itial		Fina	1
Analyte	True '	Found	%R	True	Found	%R	Found	%R
Aluminum				400.0	545.20	136.3		
Antimony				120.0	122.50	102.1	124.60	103.8
Arsenic				20.0	18.84	94.2	18.28	91.4
Barium				400.0	398.60	99.6	403.50	100.9
Beryllium				10.0	10.06	100.6	10.04	100.4
Cadmium	İ			10.0	10.41	104.1	10.63	106.3
Calcium				10000.	10510.00	105.1	10600.00	106.0
Chromium	İ			20.	20.90	104.5	21.52	107.6
Cobalt				100.	97.62	97.6	98.77	98.8
Copper				50.	51.64	103.3	52.60	105.2
Iron				200.	294.60	147.3	313.00	156.5
Lead	İ			6.	4.93	82.2	4.60	76.7
Magnesium				10000.	10290.00	102.9	10400.00	104.0
Manganese				30.	17.31	57.7	17.68	58.9
Nickel				80.	79.88	99.8	80.57	100.7
Potassium				10000.	11650.00	116.5	11800.00	118.0
Selenium				10.	6.97	69.7	10.23	102.3
Silver				20.	20.70	103.5	21.28	106.4
Sodium				10000.	9774.00	97.7	9700.00	97.0
Thallium				20.	21.72	108.6	25.17	125.8
Vanadium				100.	98.25	98.2	100.10	100.1
Zinc			12-7	40.	40.78	102.0	41.51	103.8

Control Limits: no limits have been established by EPA at this time

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLING	TON			_ Contrac	et: <u>2304</u>	46			-
Lab Code:	STLVT	Case 1	No.:	23046	_ sas	No.:		SDG No.:	IDW001	
AA CRDL St	andard Source	ce:	Inor	ganic V	Ventures					

Concentration Units: ug/L

				CRDL Standard for ICP Initial Final				1
Analyte	True	Found	%R	True	Found	%R 1	Found	*R
Mercury	0.2	0.17	85.0					

Control Limits: no limits have been established by EPA at this time

ICP CRDL Standard Source: Inorganic Ventures

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name	: STL BURLI	NGTON	Contract: <u>23046</u>	
Lab Code	STLVT	Case No.: 23046	SAS No.:	SDG No.: IDW001

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				CRDL Standard for ICP				
				Initial			Final	
Analyte	True	Found	%R	True	Found %	R Found	%R	
Mercury	0.2	0.24	120.0					

Control Limits: no limits have been established by EPA at this time

2B-IN CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: <u>SDG No.: IDW001</u>

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

·				CRDL Standard for ICP Initial Final			
Analyte	True	Found	%R ··	True	Found %R	Found	%R
Mercury	0.2	0.22	110.0				

Control Limits: no limits have been established by EPA at this time

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank					Calibra (ug/L)			Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	C	С	M
Cyanide	10.	0 0	10.	.0 0	10	ַט וס	10.	0 U	10.000 U	AS

3

BLANKS

Lab Name: STL BUR	LINGTON	Contract: 23046			
Lab Code: STLVT	Case No.: <u>2</u>	23046 SAS No.:	SDG No.:	IDW001	
-	k Matrix (soil/watk Concentration Un	ter): WATER nits (ug/L or mg/kg): UG/L			
	Initial Calib. Blank	Continuing Calibration Blank (ug/L)	Pre Bla	eparation nk	

С

10.0 U

Analyte

Cyanide

(ug/L)

С

з.

С

M

AS

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				tinuing Blank		ation		Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Cyanide	10.	0 0	10.	0 0 0	10.	ַ ט	10.	0 0	10.000 U	AS

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	1		tinuing Blank 2	Calibra (ug/L) C	ation 3	С	Preparation Blank	С	м
Cyanide			10.	ן ט							AS

3 BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	1	C	ontinuing Ca Blank (ug			С	Preparation Blank	С	м
Aluminum	23.6		23.6		24.4		23.6	ש	30.930	В	P
Antimony			4.7	U	4.7	ש	4.7	Ū	4.700	U	P
Arcimony	4.8		4.8		4.8		4.8	U	4.800	U	P
Barium	5.9		5.9	U	5.9		5.9	U	5.900	U	P
Beryllium	0.2		0.2		0.2		0.2	U	0.200	Ū	P
Cadmium	0.7		0.2		0.6	U	0.6	ΰ	0.600	Ū	P
Calcium	182.1		182.1		182.1	U	182.1	Ū	182.100	U	P
Chromium	1.4		1.4		1.4	لت	1.4	Ū	1.400	Ū	P
Cobalt	2.0		2.0		2.0	U	2.0	ע	2.000	U	P
Copper	2.4		2.4		2.4	U	2.4	<u>'</u> ប	2.400	U	P
Iron	33.3		33.8		33.3	וט	33.3	ע	40.710	В	P
Lead	1.3		-1.6	اسبسا	1.3	וט	1.3	ับ	1.300	U	P
Magnesium	178.3	U	178.3		178.3	ָ ט	178.3	U	178.300	U	P
Manganese	-12.8		-12.9		-12.8	B	-12.9	В	-12.920	В	P
Nickel	2,1		2.1	U	2.1	U	2.1	Ū	2,100	U	P
Potassium	393.0	U	393.0	U	393.0	U	393.0	U	393.000	U	P
Selenium	3.4	U	3.4	ע	3.4	U	3.4	U	3.400	U	P
Silver	2.2	U	2.2	ע ו	2.2	U	2.2	υ	2.200	U	P
Sodium	472.7		472.7	U	472.7	U	472.7	U	472.700	U	P
Thallium	5.7		5.7	_	5.7	U	5.7	U	5.700	U	P
Vanadium	2.0	U	2.0	_	2.0	ט	2.0	U	2.000	Ū	P
Zinc	1.0	U	1.0	ט	1.0	ט	1.0	U	9.207	В	P

3

BLANKS

_____ Contract: 23046 Lab Name: STL BURLINGTON

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.:

Preparation Blank Matrix (soil/water): WATER

4	Initial Calib. Blank		(Continuing Continuing				Preparation Blank		
Analyte	(ug/L)	c	1 0	2	С	3	С		С	M
Aluminum			23.6 U	23.6	ַ					P
Antimony			4.7 U	4.7	ט					P
Arsenic			4.8 U	4.8	ש					P
Barium			5.9 U	5.9	Ū					P
Beryllium			0.2 0	0.2	ַ ט					P
Cadmium			0.6	0.6	U]			P
Calcium	İ		182.1 U		וט					P
Chromium			1.4 U	1.4	ט					P
Cobalt		T	2.0	2.0	ן ט					P
Copper			2.4 U	2.4	וט					P
Iron	İ		40.4 E		ט					P
Lead			1.3 U	1.3	ט					P
Magnesium	İ		178.3 U		וט					P
Manganese			-12.8 E		В					P
Nickel			2.1 U		וט					P
Potassium	İ	Ti	393.0 U	393.0	ט					P
Selenium	İ		3.4 U		וט					P
Silver		Τİ	2.2		U					P
Sodium	İ	i i	472.7		וֹטוֹ					P
Thallium	i	11	5.7		ט					P
Vanadium	<u> </u>	1 1	2.0		ט					P
Zinc	i	11	1.0		ט					P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank		-	Con	tinuing Blank	Calibra (ug/L)	ation		Preparation Blank		м
Alaryce	(ug/L)	С	1	С	2	С	3	С	<u> </u>		M
Mercury	0.	1 U	0.	1 U	0	. 1 ט	0.	1 U	0.100	U	CV

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				tinuing Blank	Calibr	ation		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Mercury			0.	1 0						<u> </u>	CV

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

:	Initial Calib. Blank				tinuing Blank	Calibra (ug/L)	ation		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	M
Mercury	0.	. 1 ป	0.	1 0	0	. 1 U	0.	1 U		<u> </u>	cv

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDW001

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				inuing Blank	Calibra (ug/L)	ation		Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Mercury	0.	1 U	0.	. 1 U	0	.1 U	0.	1 U	0.100 U	CV

3

BLANKS

Lab Name:	STL BURI	LINGTON		Contra	ct: 23046			
Lab Code:	STLVT	Case No	.: 23046	SAS No.:		SDG No.:	IDW001	
Preparati	on Blank	Matrix (soil	/water): WAT	ER				
Preparati	on Blank	Concentratio	n Units (ug/	L or mg/kg):	UG/L	 		
		Initial				11		

	Initial Calib. Blank				cinuing Blank	Calibra (ug/L)	ation		Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	M
Mercury			0.	1 0	0	ן טן ד				CV

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDW001</u>

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures

					·			_
	True Initial Found				Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.A	3 %R	Sol.A	Sol.AB	%R
Aluminum	500000	482740	492500	489000.0	101.3	492800	485800.0	100.6
Antimony	0	596	-2	604.7	101.5	-1	599.1	100.5
Arsenic	0	102	6	107.0	104.9	7	104.5	102.5
Barium	0	503	2	493.5	98.1	2	491.2	97.7
Beryllium	0	· 482	0	477.3	99.0	0	475.0	98.5
Cadmium	0	938	1	922.7	98.4	1	909.0	96.9
Calcium	500000	477840	482800	484000.0	101.3	481500	478300.0	100.1
Chromium	0	483	3	472.3	97.8	3	469.0	97.1
Cobalt	0	457	-1	452.4	99.0	-1	449.0	98.2
Copper	0	526	4	509.3	96.8	4	508.0	96.6
Iron	200000	191980	197900	195800.0	102.0	197300	193900.0	101.0
Lead	0	49	-1	44.1	90.0	0	44.0	89.8
Magnesium	500000	521880	530800	532800.0	102.1	529300	527400.0	101.1
Manganese	0	474	-12	458.6	96.8	-12	455.6	96.1
Nickel	0	952	1	939.6	98.7	1	932.0	97.9
Potassium	0	0	-3	22.8		-35	-48.0	
Selenium	0	47	-3	50.5	107.4	1	49.8	106.0
Silver	0	213	1	211.4	99.2	1	210.9	99.0
Sodium	0	0	-273	-263.9		-279	-296.8	
Thallium	0	89	2	90.7	101.9	-1	86.1	96.7
Vanadium	0	478	1	463.0	96.9	1	460.7	96.4
Zinc	0	998	5	1010.0	101.2	5	1003.0	100.5

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

								IDOL	STPW07S		
Lab N	Name: STL BU	RLINGTON			Con	tract: 23046	-				
Lab C	Code: STLVT	Case 1	No.: <u>230</u>	46	SAS No	·:	S	DG No.: ID	W001		
	ix (soil/wat		<u> </u>		Level	(low/med): LO	w				
•		Con	centrati	on Unit	s (ug/	L or mg/kg dry	weig	ht): <u>UG/L</u>			
	Analyte	Control Limit %R	Spiked Result	-	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	М
	Cyanide	75 - 125		108.07	743	10.0000	ט ט	100.00	108.1		AS

Comments:

5A

SPIKE SAMPLE RECOVERY

		. 1	

IDOLSTPW07FS	

Lab	Name: STL BURLINGTON	Contract:	23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	₹R	Q	м
Aluminum	75 - 125	2073.0000		30.8700	В	2000.00	102.1		P
Antimony	75 - 125	511.8000		4.7000	U	500.00	102.4		P
Arsenic	75 - 125	39.8700		4.8000	ប	40.00	99.7		P
Barium	75 - 125	2084.0000		125.2000	В	2000.00	97.9		P
Beryllium	75 - 125	50.1200		0.2000	U	50.00	100.2		P
Cadmium	75 - 125	49.9500		0.6000	ַ	50.00	99.9		P
Chromium	75 - 125	202.5000	.	1.4000	U	200.00	101.2		P
Cobalt	75 - 125	492.4000		2.0000	บ	500.00	98.5		P
Copper	75 - 125	259.6000		2.4000	U	250.00	103.8		P
Iron	75 - 125	1095.0000		65.6300	В	1000.00	102.9		P
Lead	75 - 125	19.8300		1.4850	В	20.00	91.7		P
Manganese	75 - 125	537.9000		29.9000		500.00	101.6		P
Mercury	75 - 125	0.9170		0.1000	ט	1.00	91.7		CV
Nickel	75 - 125	496.8000		2.1000	U	500.00	99.4		P
Selenium	75 - 125	9.8300		3.4000	U	10.00	98.3		P
Silver	75 - 125	50.1400		2.2000	σ	50.00	100.3		P
Thallium	75 - 125	47.9900		5.7000	ט	50.00	96.0		P
Vanadium	75 - 125	505.5000		2.0000	บ	500.00	101.1		P
Zinc	75 - 125	515.7000		11.5500	В	500.00	100.8		P

Comments:	

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

IDOLSTSFW07S		

Lab	Name:	STL	BURLINGTON	Contract:	23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): _UG/L____

Analyte	Control	Spiked Sample	С	Sample	С	Spike	%R	Q	м
	Limit %R	Result (SSR)		Result (SR)		Added (SA)		Ι¥	
Aluminum	75 - 125	2106.0000		91.6900	В	2000.00	100.7		P
Antimony	75 - 125	505.9000		4.7000	U	500.00	101.2		P
Arsenic	75 - 125	41.6900		4.8000	U	40.00	104.2		P
Barium	75 - 125	2056.0000		121.4000	В	2000.00	96.7		P
Beryllium	75 - 125	49.2000		0.2000	ט	50.00	98.4		P
Cadmium	75 - 125	49.2100		0.6000	[ט	50.00	98.4		P
Chromium	75 - 125	199.7000		1.4000	U	200.00	99.8		P
Cobalt	75 - 125	484.8000		2.0000	U	500.00	97.0	<u> </u>	P
Copper	75 - 125	257.0000		2.4000	บ	250.00	102.8		P
Iron	75 - 125	1166.0000		168.5000		1000.00	99.8		P
Lead	75 - 125	18.3600		1.3000	U	20.00	91.8		P
Manganese	75 - 125	509.8000		9.2720	В	500.00	100.1		P
Mercury	75 - 125	0.9640		0.1000	U	1.00	96.4		cv
Nickel	75 - 125	487.9000		2.1000	บ	500.00	97.6	<u> </u>	P
Selenium	75 - 125	8.8300		3.4000	ប	10.00	88.3	<u> </u>	P
Silver	75 - 125	51.1500		2.2000	บ	50.00	102.3		P
Thallium	75 - 125	43.1300		5.7000	ַע	50.00	86.3		P
Vanadium	75 - 125	498.0000		2.0000	ט	500.00	99.6		P
Zinc	75 - 125	504.3000		4.6620	В	500.00	99.9		P
Cyanide	75 - 125	108.7437		10.0000	ט	100.00	108.7		AS

Comments:			
		 · · · · · · · · · · · · · · · · · · ·	

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

71	Control	Spiked Sample		Sample		Spike			
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	%R	Ω	М
Aluminum	75 - 125	1996.0000		23.6000	ַ	2000.00	99.8		P
Antimony	75 - 125	497.1000		4.7000	ַ ש	500.00	99.4		P
Arsenic	75 - 125	39.0100		4.8000	U	40.00	97.5		P
Barium	75 - 125	2032.0000		122.1000	В	2000.00	95.5		P
Beryllium	75 - 125	49.0100		0.2000	บ	50.00	98.0		P
Cadmium	75 - 125	48.6000		0.6000	บ	50.00	97.2		P
Chromium	75 - 125	197.7000		1.4000	ַט	200.00	98.8		P
Cobalt	75 - 125	481.1000		2.0000	[ט	500.00	96.2		P
Copper	75 - 125	252.9000		2.4000	U	250.00	101.2		P
Iron	75 - 125	1054.0000		55.6200	В	1000.00	99.8		P
Lead	75 - 125	17.9200		1.3000	ַ	20.00	89.6		P
Manganese	75 - 125	495.6000		0.7000	ט	500.00	99.1		P
Mercury	75 - 125	0.9400		0.1000	[ט	1.00	94.0		CV
Nickel	75 - 125	485.9000		2.1000	[ט	500.00	97.2		P
Selenium	75 - 125	6.8160		3.4000	[ט	10.00	68.2	N	P
Silver	75 - 125	50.5100		2.2000	ט	50.00	101.0		P
Thallium	75 - 125	47.1000		5.7000	U	50.00	94.2		P
Vanadium	75 - 125	493.5000		2.0000	U	500.00	98.7		P
Zinc	75 - 125	500.5000		4.4110	В	500.00	99.2		P

Comments:				
		 		

5B

POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

	IDOLSTPWO	07FA	

Lab Name: _	ame: STL BURLINGTON		Contract: 23046			
Lab Code:	STLVT	Case No.: 23046	SAS		SDG No.:	IDW001
Matrix (soi	il/water):	WATER		Level (low/m	ed): LOW	

	[0	Spiked Sample		Sample		Spike	<u> </u>		
Analyte	Control Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	%R	Q	М
Aluminum		2295.00		30.87	В	2000.0	113.2		P
Antimony		557.90		4.70	υ	500.0	111.6		P
Arsenic		41.84		4.80	บ	40.0	104.6		P
Barium		2284.00		125.20	В	2000.0	107.9		P
Beryllium		55.26		0.20	U	50.0	110.5		P
Cadmium		54.97		0.60	U	50.0	109.9		P
Chromium		222.50		1.40	บ	200.0	111.2		P
Cobalt		541.20		2.00	U	500.0	108.2		P
Copper		286.10		2.40	บ	250.0	114.4		P
Iron		1133.00		65.63	В	1000.0	106.7		P
Lead		21.76		1.48	В	20.0	101.4		P
Manganese		588.80		29.90		500.0	111.8		P
Nickel		546.40		2.10	U	500.0	109.3		P
Selenium		10.60		3.40	U	10.0	106.0		P
Silver		54.66		2.20	U	50.0	109.3		P
Thallium		52.23		5.70	U	50.0	104.5		P
Vanadium		557.40		2.00	บ	500.0	111.5		P
Zinc		566.10		11.55	В	500.0	110.9		P

Comments:			

5B

POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

TDO:	LSTS	FW07	A

Lab Name: STL	BURLINGTON	Contract:	: 23046	
Lab Code: STLVI	Case No.: 23046	SAS	SDG No.:	IDW001
Matrix (soil/wa	ter): warrr	Le	vel (low/med): LOW	

				TOIL OHIES. dg/ H			· · · · · · · · · · · · · · · · · · ·		
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	C,	Spike Added(SA)	%R	Q	М
Aluminum		2230.00		91.69	В	2000.0	106.9		P
Antimony		531.00		4.70	IJ	500.0	106.2		P
Arsenic		38.58		4.80	υ	40.0	96.4		P
Barium		2160.00		121.40	В	2000.0	101.9		P
Beryllium		52.21		0.20	υ	50.0	104.4		P
Cadmium		52.03		0.60	U	50.0	104.1		P
Chromium		210.90		1.40	U	200.0	105.4		P
Cobalt		513.50		2.00	U	500.0	102.7		P
Copper		270.60		2.40	บ	250.0	108.2		P
Iron		1192.00		168.50		1000.0	102.4		P
Lead		19.67		1.30	υ	20.0	98.4		P
Manganese		539.10		9.27	В	500.0	106.0		P
Nickel		517.30		2.10	บ	500.0	103.5		P
Selenium		11.01		3.40	U	10.0	110.1		P
Silver		52.18		2.20	U	50.0	104.4		P
Thallium		49.82		5.70	บ	50.0	99.6		P
Vanadium		526.30		2.00	บ	500.0	105.3		P
Zinc		536.00		4.66	В	500.0	106.3		P
Cyanide		23.25		10.00	บ	20.0	116.2		AS

Comments:			 	

5B

POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

Lab Name:	STL BURLING	GTON	Contr				
Lab Code:	STLVT	Case No.: 23046	SAS		SDG No.:	IDW001	
Matrix (so	il/water):	WATER		Level (low/	med): LOW		

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added(SA)	%R	Q	М
Aluminum		2121.00		23.60	ש	2000.0	106.0		P
Antimony		514.60		4.70	บ	500.0	102.9		P
Arsenic		38.39		4.80	U	40.0	96.0		P
Barium		2100.00		122.10	В	2000.0	98.9		P
Beryllium		50.14		0.20	U	50.0	100.3		P
Cadmium		49.97		0.60	บ	50.0	99.9		P
Chromium		202.90		1.40	บ	200.0	101.4		P
Cobalt		493.40		2.00	U	500.0	98.7		P
Copper		262.60		2.40	บ	250.0	105.0		P
Iron		1051.00		55.62	В	1000.0	99.5		P
Lead		18.17		1.30	Ū	20.0	90.8		P
Manganese		510.60		0.70	U	500.0	102.1		P
Nickel		497.80		2.10	U	500.0	99.6		P
Selenium		9.50		3.40	U	10.0	95.0		P
Silver		49.16		2.20	υ	50.0	98.3		P
Thallium		47.35		5.70	U	50.0	94.7		P
Vanadium		508.10		2.00	U	500.0	101.6		P
Zinc		522.80		4.41	В	500.0	103.7		P

Comments:	Market and the second of the s			
<u></u>				

DUPLICATES

SAMPLE NO.

10.0000 U

		IDOLSTPW07D
Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Level (low/med):	LOW
% Solids for Sample: 0.0	% Solids for Duplicate:	0.0
Concentration Uni	ts (ug/L or mg/kg dry weig	ght): UG/L
Analyte Control		
Limit Samp	Le (S) C Duplic	ate (D) C RPD Q M

10.0000

Cyanide

0 DUPLICATES

% Solids for Duplicate: 0.0

SAMPLE NO.

IDOLSTPW07FD	

Lab	Name:	STL BURLINGTON	Contract: 23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

	Control	tion Units (ug/L or mo						
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Ω	М
Aluminum		30.8700	В	24.4100	В	23.4		F
Antimony		4.7000	U	4.7000	U			E
Arsenic		4.8000	Ū	4.8000	U			F
Barium		125.2000	В	119.6000	В	4.6		F
Beryllium		0.2000	บ	0.2000	บ			F
Cadmium		0.6000	U	0.6000	U			F
Calcium		62060.0000		58820.0000		5.4		F
Chromium		1.4000	U	1.4000	U			E
Cobalt		2.0000	Ū	2.0000	ם			I
Copper		2.4000	υ	2.4000	U			F
Iron		65.6300	В	62.8100	В	4.4		F
Lead		1.4850	В	1.3000	บ	200.0		F
Magnesium	5000.0	14700.0000		13980.0000		5.0		I
Manganese	15.0	29.9000		27.7200		7.6		I
Mercury		0.1000	Ū	0.1000	U			C
Nickel		2.1000	U	2.1000	ט			I
Potassium		2939.0000	В	2751.0000	В	6.6	ļ	I
Selenium		3.4000	Ū	3.4000	U			I
Silver		2.2000	Ū	2.2000	U]
Sodium	5000.0	10200.0000		9893.0000		3.1]
Thallium		5.7000	U	5.7000	U]
Vanadium		2.0000	U	2.0000	U]
Zinc		11.5500	В	3.3610	В	109.8		

6

DUPLICATES

SAMPLE NO.

IDOLSTSFW07D

Lab Name: STL BURLINGTON Contract: 23046

Level (low/med): LOW Matrix (soil/water): WATER

% Solids for Duplicate: 0.0 % Solids for Sample: 0.0

	Concentrat	tion Units (ug/L or m	a/ka	dry weight): UG/1	<u>.</u>	•		
	Control	lion onics (ag/1 or m	9, 29			<u> </u>	T	
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	м
Aluminum		91.6900	В	89.9100	в	2.0		P
Antimony		4.7000	Ū	4.7000	Ū			P
Arsenic		4.8000	ט	4.8000	υ			P
Barium		121.4000	В	122.0000	В	0.5		P
Beryllium		0.2000	ט	0.2000	ט			P
Cadmium		0.6000	ט	0.6000	Ū			P
Calcium		60830.0000	İ	61410.0000		0.9		P
Chromium		1.4000	บ	1.4000	บ			P
Cobalt		2.0000	U	2.0000	U			P
Copper		2.4000	ט	2.4000	υ			P
Iron	100.0	168.5000		185.3000		9.5		P
Lead		1.3000	ט	1.3000	Ū			P
Magnesium	5000.0	14440.0000		14600.0000		1.1		P
Manganese		9.2720	В	9.4960	В	2.4		P
Mercury		0.1000	ט	0.1000	υ			Cν
Nickel		2.1000	ט	2.1000	U			₽
Potassium		2844.0000	В	2880.0000	В	1.3		P
Selenium		3.4000	บ	3.4000	U			P
Silver		2.2000	บ	2.2000	υ			P
Sodium	5000.0	10040.0000		10090.0000		0.5		P
Thallium		5.7000	U	5.7000	บ			P
Vanadium		2.0000	U	2.0000	บ			P
Zinc		4.6620	В	2.7860	В	50.4		P
Cyanide		10.0000	บ	10.0000	U			AS

6

DUPLICATES

SAMPLE NO.

IDOLSTSFW07D		_

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0 % Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L ...

33	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	M
Aluminum		23.6000	บ	23.6000	U			P
Antimony		4.7000	U	4.7000	Ū			P
Arsenic		4.8000	บ	4.8000	U			P
Barium		122.1000	В	118.0000	В	3.4		P
Beryllium		0.2000	U	0.2000	ט			P
Cadmium		0.6000	Ū	0.6000	Ū			P
Calcium		62270.0000		59600.0000		4.4		P
Chromium		1.4000	Ū	1.4000	U			P
Cobalt		2.0000	Ū	2.0000	U			P
Copper		2.4000	U	2.4000	U			P
Iron		55.6200	В	51.9700	В	6.8		P
Lead		1.3000	U	1.3000	υ			P
Magnesium	5000.0	14750.0000		14120.0000		4.4		P
Manganese		0.7000	ט	0.7000	Ū			P
Mercury		0.1000	Ū	0.1000	บ			CV
Nickel		2.1000	U	2.1000	U			P
Potassium		2949.0000	В	2795.0000	В	5.4		P
Selenium		3.4000	บ	3.4000	บ			P
Silver		2.2000	υ	2.2000	U			P
Sodium	5000.0	10330.0000	i	10070.0000		2.5		P
Thallium		5.7000	υ	5.7000	υ			P
Vanadium		2.0000	U	2.0000	บ			P
Zinc		4.4110	В	4.8520	В	9.5		P

7 LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLINGTO	ONNC		Contract:	23046			
Lab Code:	STLVT	Case No.:	23046	SAS No.: _		SDG No.:	IDW001	

Solid LCS Source:

Aqueous LCS Source: <u>Inorganic Ventures</u>

	Aqueou	ıs (ug/L)			Solid	l	(mg/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	₹R
Aluminum	51000.0	48140.00	94.4			Ī		
Antimony	2000.0	1900.00	95.0					
Arsenic	1050.0	982.10	93.5					
Barium	500.0	469.90	94.0					<u> </u>
Beryllium	500.0	467.10	93.4					<u> </u>
Cadmium	525.0	479.20	91.3					<u> </u>
Calcium	50000.0	47370.00	94.7]			<u> </u>
Chromium	500.0	467.30	93.5			1		<u></u>
Cobalt	500.0	457.70	91.5					
Copper	500.0	482.20	96.4					<u> </u>
Iron	50500.0	48240.00	95.5					
Lead	1015.0	943.60	93.0					
Magnesium	50000.0	47290.00	94.6					
Manganese	500.0	456.80	91.4					
Nickel	500.0	466.40	93.3					<u> </u>
Potassium	50000.0	47540.00	95.1		1			
Selenium	525.0	474.90	90.5					<u> </u>
Silver	500.0	393.10	78.6					
Sodium	50000.0	48260.00	96.5					
Thallium	550.0	504.40	91.7					
Vanadium	500.0	471.80	94.4					
Zinc	500.0	481.60	96.3					<u></u>

7 LABORATORY CONTROL SAMPLE

Lab Name	e: STL BUR	LINGTON			_ Contract:	23046				
Lab Code	e: STLVT	Case No	.: 23046		SAS No.:		SDG :	No.: <u>IDW001</u>		
	CS Source: LCS Source	: Inorganic	Ventures							
		Aqueous	(ug/L)			Solic	i (mg,	/kg)		
Analy	te	True	Found	%R	True	Found	С	Limits	%R	

91.0

0.91

1.0

Mercury

7 LABORATORY CONTROL SAMPLE

Lab	Name:	STL BURLINGTO	NC	Contract: 23046	
Lab	Code:	STLVT	Case No.: 23046	SAS No.:	SDG No.: IDW001
Soli	d LCS	Source:			

Aqueous LCS Source: <u>Inorganic Ventures</u>

:	Aqueous	(ug/L)			Solid (m	g/kg)	
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury	1.0	0.92	92.0				

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLSTPW07FL

Lab	Name:	STL	BURLINGTON	Contract:	23046
-----	-------	-----	------------	-----------	-------

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Matrix (soil/water): WATER Level (low/med): LOW

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	м
Aluminum	30.87	В	118.00	ט	100.0		P
Antimony	4.70	U	23.50	ט			P
Arsenic	4.80	ן ט	24.00	U			P
Barium	125.20	В	128.60	В	2.7		P
Beryllium	0.20	ט	1.00	Ū			P
Cadmium	0.60	ט	3.94	В	100.0		P
Calcium	62060.00	İ	62920.00		1.4		P
Chromium	1.40	<u>י</u>	7.00	Ū		Ì	P
Cobalt	2.00	<u></u> ד	10.00	Ū		Î	P
Copper	2.40	ָט	12.00	U			P
Iron	65.63	В	192.50	В	193.3		P
Lead	1.48	В	6.50	Ū	100.0	ĺ	P
Magnesium	14700.00	i	14860.00	В	1.1		P
Manganese	29.90	i	3.50	U	100.0	Ī	P
Nickel	2.10	ָ <u>ט</u>	10.50	Ū		İ	P
Potassium	2939.00	В	3026.00	В	3.0		P
Selenium	3.40	U	17.00	U		Ì	P
Silver	2.20	<u></u> ט	11.00	ט		Ī	P
Sodium	10200.00	<u> </u>	8104.00	В	20.5	i	P
Thallium	5.70	ט	28.50	ט		Ì	P
Vanadium	2.00	U	10.00	ט			P
Zinc	11.55	В	18.55	В	60.6	Ī	P

9 ICP SERIAL DILUTIONS

SAMPLE NO.

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Matrix (soil/water): WATER Level (low/med): LOW

					8	l	Ι
	Initial Sample		Serial Dilution		* Differ-		
Analyte	Result (I)		Result (S)	ړ	ence	Q	١,
		С		С		L	<u> </u>
Aluminum	91.69	В	118.00		100.0	<u> </u>	E
Antimony	4.70	ן ט	23.50			<u> </u>	I
Arsenic	4.80	ן ט	24.00	U			F
Barium ·	121.40	B	122.60	В	1.0	L	P
Beryllium	0.20	U	1.00	Ū			P
Cadmium	0.60	U	3.00	ט		Ī	P
Calcium	60830.00	İ	61650.00		1.3	Ī	F
Chromium	1.40	<u>י</u>	7.00	U			F
Cobalt	2.00	<u>י</u>	10.00	U			E
Copper	2.40	U	12.00	Ū			F
Iron	168.50	İ	273.10	В	62.1		E
Lead	1.30	[ט	6.50	ט			E
Magnesium	14440.00		14590.00	В	1.0		F
Manganese	9.27	В	3.50	Ū	100.0		E
Nickel	2.10	U	10.50	ט			E
Potassium	2844.00	В	3002.00	В	5.6		I
Selenium	3.40	ט	17.00	ਧ			F
Silver	2.20	U	11.00	Ū	İ		F
Sodium	10040.00		9653.00	В	3.9		E
Thallium	5.70	υ	28.50	U	1	Ì	E
Vanadium	2.00	<u>ט</u>	10.00	ਹ	İ	Ì	1
Zinc	4.66	В	10.57	В	126.8	İ	1

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLSTSFW07FL

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDW001
Matrix (soil/water): WATER	Level (low/med):	LOW

	Concentra	tio	n Units: ug/L				
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	M
Aluminum	23.60	U	118.00	U			P
Antimony	4.70	Ū	23.50	ט			P
Arsenic ·	4.80	U	24.00	ט			F
Barium	122.10	В	124.60	В	2.0		P
Beryllium	0.20	ט	1.00	Ū			P
Cadmium	0.60	ט	3.00	U			P
Calcium	62270.00		63000.00		1.2		P
Chromium	1.40	ט	7.00	Ū			P
Cobalt	2.00	Ū	10.00	Ū			P
Copper	2.40	U	12.00	Ū			P
Iron	55.62	В	235.50	В	323.4		P
Lead	1.30	U	6.50	Ū	İ		P
Magnesium	14750.00		14850.00	В	0.7		P
Manganese	0.70	Ū	3.50	Ū			P
Nickel	2.10	ับ	10.50	U			P
Potassium	2949.00	В	2938.00	В	0.4		P
Selenium	3.40	U	17.00	U			P
Silver	2.20	U	11.00	ט			P
Sodium	10330.00		10860.00	В	5.1		P
Thallium	5.70	U	28.50	U	İ		P
Vanadium	2.00	ָט	10.00	U			P
Zinc	4.41	В	13.52	В	206.6	Ì	P
		·					-

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON			Contrac	t: <u>23046</u>			
Lab Code: STLVT C	ase No.: 230	046	SAS No.		_ SDG	No.	: IDW001
ICP ID Number:			Date:	07/01/03			
Flame AA ID Number: <u>La</u> Furnace AA ID Number: _	chat Cyanid	le					
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
	Cyanide			10	10.0	AS	

Comments:

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON			Contract: 23046				
Lab Code: STLVT C	STLVT Case No.: 23046			SAS No.: SDG No.: IDW00			
ICP ID Number:			Date:	07/01/03			
Flame AA ID Number: <u>Le</u> Furnace AA ID Number: _	eeman Hydra	AA					
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
	Mercury	253.70		0.2	0.10	CA	

Comments:

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDW001
ICP ID Number: TJA ICAP 4	Date: 07/01/03
Flame AA ID Number:	
Furnace AA ID Number:	

Analyte	Wave- length	Back- ground	CRDL	IDL	м
	(nm)	ground	(ug/L)	(ug/L)	
Aluminum	308.215		200	23.6	P
Antimony	206.838		60	4.7	P
Arsenic	189.042		10	4.8	P
Barium	493.409		200	5.9	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.6	P
Calcium	317.933		5000	182.1	P
Chromium	267.716		10	1.4	P
Cobalt	228.616		50	2.0	P
Copper	324.754		25	2.4	P
Iron	271.441		100	33.3	P
Lead	220.353		3	1.3	P
Magnesium	279.078		5000	178.3	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.1	P
Potassium	766.491		5000	393.0	P
Selenium	196.026		5	3.4	P
Silver	328.068		10	2.2	P
Sodium	330.232		5000	472.7	P
Thallium	190.864		10	5.7	P
Vanadium	292.402		50	2.0	P
Zinc	213.856		20	1.0	P

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046

ICP ID Number: TJA ICAP 4 Date: 06/30/03

······································	Wave- length	I	Interelement	Correction 1	Factors for:	
Analyte	(nm)	Al	Ca	Fe	Mg	Ba
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	-0.0000600	0.0000000	0.0000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0008950	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000330	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	0.0004320
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.0006300	0.0000000	0.0000090	0.0000000	0.0000000
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000200	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.03	0.0000000	0.000000	-0.0000220	0.0000000	0.000000
Silicon	288.16	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0000200	0.000000	-0.0000900	0.0000000	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	0.0000490	0.0000000	0.000000
Zinc	213.86	0.0000250	0.000000	0.0000630	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab 1	Name:	STL BURLINGTON	Contract:	23046
-------	-------	----------------	-----------	-------

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave- length	3	Interelement	Correction E	Factors for:	
Analyte	(nm)	Co	Cr	Cu	Mn	Мо
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0072400
Antimony	206.84	0.0000000	0.0111600	0.0000000	0.0000000	-0.0024800
Arsenic	189.04	0.0000000	0.0004700	0.0000000	0.0000000	0.0013380
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0001150	0.0000000	0.0000000	0.0000000	0.0001350
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	-0.0016380
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.1059800	0.0000000	0.0000000	0.0000000	0.0036200
Lead	220.35	-0.0022600	-0.0001190	0.0000000	0.0000000	-0.0007540
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	-0.0004300	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silicon	288.16	0.0000000	-0.0038600	0.0000000	0.0000000	-0.0042750
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	-0.0007920
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0032700	0.0002540	0.0000000	-0.008140	0.0000000
Tin	189.99	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	-0.0160000
Zinc	213.86	0.0000000	0.000000	0.0003300	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLINGTON		Contract:	23046	
Lab	Code: STLVT	Case No.: 23046	SAS No.:		SDG No.: IDW001

ICP ID Number: TJA ICAP 4 Date: 06/30/03

:	Wave-]	nterelement	Correction I	Factors for:	
Analyte	length (nm)	Ni	Sb	Sn	v	Zn
Aluminum	308:22	0.0000000	0.0000000	0.1440400	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	.0.0006280	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.75	0.0000000	0.0000000	0.000000	-0.000192	0.0000000
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0237000	0.0000000
Lead	220.35	0.0001240	-0.0002280	0.0000000	0.0005020	0.0000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.0001660	0.0000000	0.0000000	0.000000
Silicon	288.16	0.0000000	0.0000000	-0.1212200	0.0000000	0.000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.1177000
Thallium	190.86	0.0000000	0.000000	0.0000000	0.0025400	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Zinc	213.86	0.0052400	0.0000000	0.0000000	0.0000000	0.000000

Comments:	 	 	 	 	

12 ICP LINEAR RANGES (QUARTERLY)

Lab Na	ame:	STL	BURLINGTON	Contract	: _	23046	 	

ICP ID Number: TJA ICAP 4 Date: 07/01/03

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	10000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	10000.0	P
Magnesium	10.00	500000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	10000.0	P
Potassium	10.00	100000.0	P
Selenium	10.00	5000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	5000.0	P

Comments:	

13

PREPARATION LOG

Lab	Name:	STL BURLINGTO	ON	Contract:	23046	
Lab	Code:	STLVT	Case No.: <u>23046</u>	SAS No.:	SDG No.:	IDW001

Method: AS

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
ICV	08/02/03	50.0	50.0
IDOLPDSFW14	08/02/03	50.0	50.0
IDOLSTPW06	08/02/03	50.0	50.0
IDOLSTPW07	08/02/03	50.0	50.0
IDOLSTPW07100	08/02/03	50.0	50.0
IDOLSTPW07D	08/02/03	50.0	50.0
IDOLSTPW07S	08/02/03	50.0	. 50.0
IDOLSTSFW06	08/02/03	50.0	. 50.0
IDOLSTSFW07	08/02/03	50.0	50.0
IDOLSTSFW07100	08/02/03	50.0	50.0
IDOLSTSFW07D	08/02/03	50.0	50.0
IDOLSTSFW07S	08/02/03	50.0	50.0
PBW0802A	08/02/03	50.0	50.0

13 PREPARATION LOG

Lab	Name:	STL BURLINGTON	Contract:	23046	

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Method: AS

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
ICV	08/02/03	50.0	50.0
IDOLADSFW12	08/02/03	50.0	50.0
IDOLPDSFW13	08/02/03	50.0	50.0
IDOLSTPW05	08/02/03	50.0	50.0
IDOLSTSFW05	08/02/03	50.0	50.0
PBW0802B	08/02/03	50.0	50.0

13 PREPARATION LOG

Lab Name:	STL BURLINGTON	Contract:	23046		
-----------	----------------	-----------	-------	--	--

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
IDOLPDSFW14	08/14/03	100.0	100.0
IDOLPDSFW14F	08/14/03	100.0	100.0
IDOLSTPW06F	08/14/03	100.0	100.0
IDOLSTPW07100F	08/14/03	100.0	100.0
IDOLSTPW07F	08/14/03	100.0	100.0
IDOLSTPW07FD	08/14/03	100.0	100.0
IDOLSTPW07FS	08/14/03	100.0	100.0
IDOLSTSFW06	08/14/03	100.0	100.0
IDOLSTSFW06F	08/14/03	100.0	100.0
IDOLSTSFW07	08/14/03	100.0	100.0
IDOLSTSFW07100	08/14/03	100.0	100.0
IDOLSTSFW07100F	08/14/03	100.0	100.0
IDOLSTSFW07D	08/14/03	100.0	100.0
IDOLSTSFW07D	08/14/03	100.0	100.0
IDOLSTSFW07F	08/14/03	100.0	100.0
IDOLSTSFW07FS	08/14/03	100.0	100.0
IDOLSTSFW07S	08/14/03	100.0	100.0
LCSW0814D	08/14/03	100.0	100.0
PBW0814D	08/14/03	100.0	100.0

13

PREPARATION LOG

Lab	Name:	STL BURLINGTO	ON	Contract:	23046			···
Lab	Code:	STLVT	Case No.: 23046	SAS No.:		SDG No.:	IDW001	

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
IDOLADSFW12	08/14/03	100.0	100.0
IDOLADSFW12F	08/14/03	100.0	100.0
IDOLPDSFW13	08/14/03	100.0	100.0
IDOLPDSFW13F	08/14/03	100.0	100.0
IDOLSTPW05F	08/14/03	100.0	100.0
IDOLSTSFW05	08/14/03	100.0	100.0
IDOLSTSFW05F	08/14/03	100.0	100.0
LCSW0814G	08/14/03	100.0	100.0
PBW0814G	08/14/03	100.0	100.0

13 PREPARATION LOG

Lab Name: STL BURLINGTON Contract: 23046

Method: P

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
IDOLADSFW12	08/08/03	100.0	100.0
IDOLADSFW12F	08/08/03	100.0	100.0
IDOLPDSFW13	08/08/03	100.0	100.0
IDOLPDSFW13F	08/08/03	100.0	100.0
IDOLPDSFW14	08/08/03	100.0	100.0
IDOLPDSFW14F	08/08/03	100.0	100.0
IDOLSTPW05F	08/08/03	100.0	100.0
IDOLSTPW06F	08/08/03	100.0	100.0
IDOLSTPW07100F	08/08/03	100.0	100.0
IDOLSTPW07F	08/08/03	100.0	100.0
IDOLSTPW07FD	08/08/03	100.0	100.0
IDOLSTPW07FS	08/08/03	100.0	100.0
IDOLSTSFW05	08/08/03	100.0	100.0
IDOLSTSFW05F	08/08/03	100.0	100.0
IDOLSTSFW06	08/08/03	100.0	100.0
IDOLSTSFW06F	08/08/03	100.0	100.0
IDOLSTSFW07	08/08/03	100.0	100.0
IDOLSTSFW07100	08/08/03	100.0	100.0
IDOLSTSFW07100F	08/08/03	100.0	100.0
IDOLSTSFW07D	08/08/03	100.0	100.0
IDOLSTSFW07D	08/08/03	100.0	100.0
IDOLSTSFW07F	08/08/03	100.0	100.0
IDOLSTSFW07FS	08/08/03	100.0	100.0
IDOLSTSFW07S	08/08/03	100.0	100.0
LCSW0808E	08/08/03	100.0	100.0
PBW0808E	08/08/03	100.0	100.0

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 _____ End Date: 08/02/03

EPA													7	lna													
Sample	D/F	Time	% R	A	s	A	В	В	C	С	С															Z	
No.				L	В	s	A	E	D	Α	R	0	U	E	В	G	N	G	I		E	G	A	L		И	И
S0	1.00	0925		1																					\cdot		Х
S10	1.00	0926		T																	L						X
S30	1.00	0926				ĺ																				Ш	Х
S50	1.00	0927		T																							X
S100	1.00	0928																									X
S200	1.00	0929					<u> </u>																			ot	X
s300	1.00	0930		1	Ì																						X
ICV	1.00	0932		T	İ																						X
ICB	1.00	0933																									X
LRS	1.00	0934		1			Ī		Π																		Х
LRS	1.00	0935					Π							Î													Х
CCV	1.00	0936		T	1														Ī						\Box		X
CCB	1.00	0937		1		Ì	İ						Ī						Ī		Γ						Х
PBW0802A	1.00	0938		1			Ì					Ī	İ	İ	Ī						Γ	Ī					х
ZZZZZZ	1.00			i			i													Γ	Ī	İ			П		Ī
ZZZZZZ	1.00	0940		1		T	i			Ì		İ		<u> </u>				Ī	Ì	Γ	Ī	Π			П	П	Γ
ZZZZZZ	1.00	0941				İ	İ					İ						Ī									Π
ZZZZZZ	1.00			十	İ		<u> </u>	İ				İ	Ī	İ		Ī					Ī	Π		Ī		П	
ZZZZZZ	1.00	0943		1			i			İ						Ī			Ī		Ī						Π
ZZZZZZ	1.00	0944		 		Ī	Ì		<u> </u>	i		Ī	ĺ					Π	Π		Ī						
ZZZZZZ	1.00			T	1	İ	İ	Ì	Γ	Π			Ì					Π							Γ	П	
ZZZZZZ	1.00	0946		T	Π	İ	İ	Π		Ī		İ	Ī	<u> </u>		Π		Π			Ī						
ZZZZZZ	1.00	0947		\top	Τ		İ	İ					Ì					Π	Γ	Ī		Γ					
CCV	1.00	0948		<u> </u>	T		İ	Ī	Π	İ		Π	Ī						Ī			Π					X
CCB	1.00	0949		T	T		Ī				Ī		Π	Ī		Ì									Π		X
ZZZZZZ	1.00	0950	· · · · · ·	1	T	<u> </u>	ÍΤ	İ							П	Ī			Π		Î				\Box		
ZZZZZZ	1.00	0951		T			Ī		Π	Ì			Ì														
IDOLPDSFW14	1.00	0952					İ		Ī	Ī	Π		Ī							Π	1						X
IDOLSTSFW06	1.00	0953					T	T	Ī	Ī	<u> </u>		Ī	Π									Γ				Х
IDOLSTPW06	1.00	0954				T	İ			İ	Ì	Ī	Π	Π	İ	Ī		Π			Π						X
IDOLSTPW07	1.00	0955			T	T	Ī			İ		Ī	Ī	1							Ī						X
IDOLSTPW07D	1.00	0956				Π	Ī		Γ	Ī		ĺ	Ī			Γ											X
IDOLSTPW07S	1.00	0957		1	T	1	İ		Ī	Ī		Ī	Ī	Π				Π			Π	Π		Ī			X
IDOLSTPW07100	1.00	0957				T	ĺ	Ī	ĺ	Ī	Ï		1				Π			Γ							Х
IDOLSTSFW07		0958	1	T	1	T	Ī	İ		Ī	Ì	Γ	Ī						Τ								7
CCV		0959	İ	T	1	1	İ		Ì	ĺ		Ī	1	Π		Γ	Ì		Ī				Γ				7
ССВ		1000		1	T	1	İ	Π	Î	i	Ī	T	Ì			Ī		Ī		Π	Ī				Γ		7
IDOLSTSFW07D		1001	 	\top	1	\top	i	1	t –	t	İ	1	i	t	İ	1	T	T	Ť	T	i	T	Ī	Ī	Π	Π	>

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 End Date: 08/02/03

EPA			•									P	\na	ly	te	s							
Sample No.	D/F	Time	% R	A	S B	A S	B A	B E		 l .	C 0			P B		M N	N	S E	 N A	T L	1	Z N	
IDOLSTSFW07S	1.00	1002		Г					Г		П												Х
IDOLSTSFW07100	1.00	1003																					Х
ZZZZZZ	1.00	1004																					Ĺ_
ZZZZZZ	1.00	1005																					<u></u>
IDOLSTSFW07A	1.00	1006																					X
ccv	1.00	1007																					X
ССВ	1.00	1008			Î	Π	Ī				Π	Ī											X

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 End Date: 08/02/03

tart Date: <u>08/0</u> 2																											
EPA															ly.												
Sample	D/F	Time	% R	l .	s			В		С		C					М										
No.				L	В	s	A	E	D	A	R	0	U	E	В	G	И	G	I		E	G	A	L		N	
S0	1.00	1256																							Ш	Ц	<u> </u>
S10	1.00	1257																							$oxedsymbol{oxed}$	Ш	X
S30	1.00	1258																			L		Ш			Щ	X
S50	1.00	1259					1														_					Ш	X
S100	1.00	1300	***																								X
S200	1.00	1301																				L					Х
s300	1.00	1302					İ																				X
ICV	1.00	1304			İ		ĺ						Γ														X
ICB	1.00	1305											ĺ								L						X
LRS	1.00	1306		Ī			Ī		Π																	Ш	X
LRS	1.00	1307					Ī	Ī		Ī																Ш	X
CCV	1.00	1308				Ī	İ		Ī					Π												Ш	Х
ССВ	1.00	1309		İ			Ì			Ī			Ī														Х
ZZZZZZ	1.00	1310		İ			Ī			Ī			Π														
PBW0802B	1.00	1311				Ī	İ		İ	Ì	İ		Ī			Π					l						Х
ZZZZZZ	1.00	1312		1			Ì		Γ	Î			Ī								Π						
ZZZZZZ	1.00	1313		T		Ī		Ī		Ì																	
ZZZZZZ	1.00	1314	İ	T			Ì	Ī		Ī	Ì	ĺ	Ī		ĺ												Γ
ZZZZZZ	1.00	1315	i	İ		İ	<u> </u>	Г		İ			Ī														
ZZZZZZ	1.00	1316		T			İ	i	Π	Ī			Ī	Ì													
ZZZZZZ	1.00	1317		T			Ī		Γ	Ī			Ī	Ī	ĺ								l				
ZZZZZZ	1.00	1317		İ			Ī		Γ	İ			Ī	İ	İ									Ī			
ZZZZZZ	1.00	1318		T			i	T		İ			Ī			Γ											
CCV	1.00	1319		T	İ			T	T	Ì	İ		ĺ												\Box		X
CCB		1320		†	İ	T -	Ī		Τ	i					Ī	Γ			Π	Ī	Ī		Π				X
ZZZZZZ	1.00	1321		†	İ		1	T	Ī	Î			Ī				Ī										
ZZZZZZ		1322		\dagger		1	i		T	i		İ	Ī	Ī		Ī				Π	Ī				П	П	Γ
ZZZZZZ		1323			İ	T^-	T	T	1	İ		Ī	Ī		Ī		Ī		Ī					Ī	Π		Γ
ZZZZZZ		1324		1	1	İ	T	T	T	T	Ī		Ī	Ī	1	Г	П				Π					П	П
ZZZZZZ		1325	1	İ		†	i	t	T	T		T		T	Ī	Г	Ī				Ī			Ī		П	
ZZZZZZ		1326		T		T	i	T	T	†	Ì		Ī			Ī		Γ	Γ	Γ	Ī		Γ	Ī		П	
ZZZZZZ		1327				T	i	†	T	Ì	İ	T	T	\vdash	İ			Ī		Γ	Ī	Ī			Г		Γ
ZZZZZZ		1328	1	T	T	T		T	T	Ì	İ		İ			Ī	T	Π	Ī	1					Γ		Γ
ZZZZZZ	1.00	1329	1	T	İ	1	†	T	T	Ī	Ī	T	T	1		Ī				Γ	Ī		Γ		Γ		
ZZZZZZ		1330		T		T		T	T	T	Π	T	İ	T	Τ	T	Π	Î		Γ	Ì	Ī	Ī		Γ		Γ
CCV		1331		T		T	j	T	T	Ì		T	Ī	1	T	Π	Π	Ī	Π	Π	Π	Ī	T		Γ		X
ССВ		1332		1		1	T	T	T	T	T	T	T	T	T	T	T	T	Γ	Ī	Ī		Τ	ĺ			X
IDOLADSFW12		1333	i	T	t	T	t^-	1	T	T	i	T	Ì	† -	T	İ	T	Ĺ	T	Ī	Ī	T	Ī	Î	Π	Π	X

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 End Date: 08/02/03

EPA												P	lna	ly	te	s							
Sample No.	D/F	Time	% R	A	S B	A S	B A	B E		C A	С 0				M G		H G	l	S E	A G	 T L	 Z N	t
IDOLPDSFW13	1.00	1334																					2
IDOLSTPW05	1.00	1335																					2
IDOLSTSFW05	1.00	1336		Ì] 3
ZZZZZZ	1.00	1337		T	Ī																		L
CCV	1.00	1338					Ī																3
ССВ	1.00	1339					Ī		Π	Π													2

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/02/03 End Date: 09/03/03

start Date: <u>09/02/0</u>	<u> </u>													<i>,</i> .					_								
EPA													A	na	ly	tes	3										
Sample	D/F	Time	% R	Α	S	Α	В	В	C	С	С	С	С	F'	P	М	М	Н	N	K	S	Α	N	T	V	Z	С
No.				L	В	s	Α	E	D	A	R	0	U	E	В	G	И	G	I		E	G	A	L		N	N
S0	1.00	2223		х	х	x	х	х	Х	х	Х	х	х	х	x	x	х	j	х	х	Х	Х	Х	Х	х	Х	
S	1.00	2228		х						x				х	Ī	x				х		Г	x				
S	1.00	2232			х	х						ΙÌ			х	Ī					х			х	П		
S	1.00	2236					х	х	Х	П	Х	х	х		Î		х		х			х			x	Х	
LRS	1.00	2242		х	х	х	х	х	Х	х	Х	x	х	х	х	x	x		Х	X	х	х	x	Х	х	Х	
LRS	1.00	2247		х	х	х	х	Х	х	х	Х	x	Х	x	х	x	x		х	X	X	х	Х	Х	х	Х	_
LRS	1.00	2252		х	Х	х	х	х	х	х	х	х	х	х	х	x	Х		x	X	Х	X	х	Х	x	X	
ICV	1.00	2257		х	Х	х	х	Х	х	х	Х	х	х	х	х	x	х		Х	X	Х	х	х	Х	x	Х	
ICB	1.00	2302		х	Х	х	х	Х	х	x	Х	x	х	x	х	х	х		Х	X	Х	Х	Х	Х	x	Х	
ICSA	1.00	2307		х	х	х	х	х	х	x	Х	х	х	х	x	x	х		х	X	Х	Х	Х	Х	х	Х	
ICSAB	1.00	2312		х	х	х	х	х	х	x	х	x	х	x	х	x	х		Х	Х	Х	Х	х	х	х	х	
CRI	1.00	2318		х	х	х	х	х	х	x	Х	х	х	x	х	х	Х		Х	X	Х	Х	Х	Х	х	х	
CCV	1.00	2323		х	х	х	х	х	х	Х	Х	х	х	х	х	Х	Х		Х	Х	Х	х	Х	X	х	Х	
ССВ	1.00	2328		х	х	х	x	Х	х	Х	X	х	X	х	x	х	Х		Х	X	х	х	Х	х	х	Х	
PBW0808E	1.00	2333		х	Х	х	х	Х	Х	х	Х	х	х	х	х	x	Х		X	X	Х	Х	Х	Х	х	Х	
LCSW0808E	1.00	2338		Х	х	х	х	х	х	X	X	х	х	х	Х	x	Х		X	Х	Х	Х	Х	Х	х	Х	
IDOLPDSFW14	1.00	2343		Х	х	x	х	х	X	x	Х	х	х	x	Х	x	Х		Х	X	Х	X	X	Х	х	Х	
IDOLPDSFW14F	1.00	2348		х	х	х	х	Х	Х	Х	X	х	х	x	Х	x	Х		Х	Х	X	Х	Х	Х	x	Х	
IDOLSTSFW06	1.00	2353		Х	х	Х	Х	Х	Х	X	X	x	Х	x	Х	x	Х		Х	X	Х	Х	Х	Х	x	Х	
IDOLSTSFW06F	1.00	2358		х	х	Х	Х	х	Х	Х	X	x	X	x	х	x	Х		Х	Х	х	X	Х	х	x	Х	
IDOLSTPW06F	1.00	0003		х	х	х	X	Х	х	х	X	х	Х	х	х	x	Х		Х	X	Х	X	Х	Х	x	Х	
IDOLSTPW07F	1.00	8000		х	х	х	Х	х	x	х	Х			х			Х		Х	X	X	х	Х	X	х	Х	
IDOLSTPW07FL	5.00	0013		х	Х	x	Х	Х	Х	Х	X	х	Х	x	Х	x	X		X	Х	Х	X	X	Х	$ \mathbf{x} $	Х	
IDOLSTPW07FA	1.00	0018		x	Х	x	X	Х	Х		Х	х	Х	\mathbf{x}	х		X		Х		X	Х		Х	х	Х	
CCA	1.00	0023		Х	Х	x	Х	х	X	Х	X	х	х	х	х	x	Х		Х		X		ــــــــــــــــــــــــــــــــــــــ	<u>. </u>	x	Х	
ССВ	1.00	0028		х	Х	x	Х	x	X	Х	Х	x		х			Х		Х		X	<u> </u>			_	Х	
IDOLSTPW07FD	1.00	0033		Х	Х	x	Х	Х	Х	X	Х	х	х	х	х	Х	X		Х	Х	Х	X	Х	X	х	Х	
IDOLSTPW07FS	1.00	0039		X		x	X				X			х			Х		Х			X		X		Х	_
IDOLSTPW07100F	1.00	0044		X	Х	х	X	Х	x	X	Х	х	x	х	Х	Х	Х		Х	Х	Х	x	х	Х	х	X	L
IDOLSTSFW07	1.00	0049		x	Х	x	Х	Х	x	X	Х	х	x	х	Х	Х	Х		Х	х	X	Х	X	X	x	X	
IDOLSTSFW07L	5.00	0054		Х	Х	х	Х	Х	x	X	x	x	х	х	\mathbf{x}	Х	Х		X	x	X	X	x	X	х	Х	L
IDOLSTSFW07A	1.00	0059		x	Х	x	Х	х	X		Х	х	x	х	х		Х		X	_		x	_		x	-	_
IDOLSTSFW07D	1.00	0104		x	Х	х	Х	Х	Х	X	Х	х	x	х	Х	X	X		Х	Х	X	х	x	Х	$ \mathbf{x} $	x	L
IDOLSTSFW07\$	1.00	0109		x	x	х	Х	X	x		X	х	х	х	Х		Х		Х		X	Х		X	x	Х	Ĺ
IDOLSTSFW07F	1.00	0114		Х	Х	х	Х	Х	X	X	Х	х	x	х	Х	Х	Х		х	X	X	х	х	X	x	Х	Ĺ
IDOLSTSFW07FL	5.00	0119		 	1	х	$\overline{\cdot}$		-	•				х			Х		х	Х	X	X	x	X	x	Х	L
CCV	1.00	0124		х	х	х	X	Х	x	Х	Х	х	x	х	Х	Х	Х		х	Х	Х	X	x	x	х	X	Ĺ
CCB	1.00	0129				x	•		•				_			_	Х		x	x	X	x	x	X	х	X	Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/02/03 End Date: 09/03/03

EPA													A	ma	1y	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	н	N	K	S	A	N	Т	V	Z	С
No.				L	В	s	A	E	D	A	R	0	U	E	В	G	N	G	I		E	G	A	L		И	N
IDOLSTSFW07FA	1.00	0134		Х	Х	Х	Х	Х	Х		Х	х	X	Х	X		Х		Х		X			X	X		!
IDOLSTSFW07D	1.00	0139		х	х	х	Х	х	Х	Х	Х	x	x	х	Х	х	X		х	X	X	Х	x			Х	L
IDOLSTSFW07FS	1.00	0144		Х	Х	х	Х	X	Х		X	х	x	х	Х	L	х		Х		X	Х		X	_		L
IDOLSTSFW07100	1.00	0149		х	х	х	Х	Х	X	Х	X	х	x	x	X	x	х		Х						_	•	L
IDOLSTSFW07100F	1.00	0154		Х	Х	х	Х	x	x	Х	X	х	x	х	Х	X	х		X	X	X	Х	Х	x	х	Х	L
IDOLADSFW12	1.00	0159		x	х	x	Х	Х	Х	X	X	x	х	x	Х	X	x		X			_	X		_		L
IDOLADSFW12F	1.00	0204		X	х	х	Х	x	Х	X	X	х	x	x	Х	x	x		X	X	X	Х	Х		_		L
IDOLPDSFW13	1.00	0209		x	Х	х	Х	Х	X	x	X	x	x	x	X	x	x		Х	X	X	х					L
IDOLPDSFW13F	1.00	0214		х	X	Х	x	x	X	х	X	x	х	x	Х	x	X		Х	Х	X	Х	Х	х	x		<u> </u>
IDOLSTPW05F	1.00	0219		x	х	х	Х	х	х	Х	Х	х	x	x	X	x	х		Х	Х	X	Х	Х	x	Х	Х	L
CCV	1.00	0224		х	х	Х	X	х	Х	X	X	x	x	х	X	x	x		X	Х	x	Х	х	Х	Х	X	1
CCB	1.00	0230		x	х	x	Х	х	X	Х	X	x	x	х	X	Х	х		Х	Х	x	Х	Х	Х	х	X	L
IDOLSTSFW05	1.00	0235		Х	X	х	Х	х	X	х	Х	x	x	х	X	Х	x		Х	X	Х	Х	Х	Х	х	X	L
IDOLSTSFW05F	1.00	0240		x	Х	Х	Х	x	X	x	Х	х	х	х	Х	x	x		x	x	x	Х	Х	x	х	x	L
ICSA	1.00	0245		x	Х	Х	Х	x	X	X	X	х	x	х	Х	х	х		Х	Х	X	x	Х	X	х	X	L
ICSAB	1.00	0250		х	х	х	X	X	Х	Х	Х	х	x	х	Х	X	Х		Х	Х	Х	Х	X	X	x	x	Ļ
CRI	1.00	0255		Х	х	х	X	X	X	Х	X	х	х	x	Х	x	X		х	Х	Х	Х	Х	Х	x	x	L
CCV	1.00	0300		х	х	х	Х	X	X	x	X	x	х	x	X	X	х		х	Х	Х	x	Х	X	x	X	L
CCB	1.00	0305		x	x	х	X	x	x	Х	X	x	x	x	х	X	х		х	Х	Х	X	Х	X	x	x	:

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Leeman Hydra AA Method: CV

EPA													A	na	ly'	te	3										
Sample No.	D/F	Time	% R	A	S B	A S	B A	B E	C D	C A	C R	С 0	C U	F E	P B		M N	H G	N	K		A G			V	Z N	
s0	1.00	1132																Х									
S0.2	1.00	1133		İ														Х									L
S0	1.00	1135																х								$_$	L
S0.2	1.00	1137		Π			l											Х									L
\$0.5	1.00	1139			ĺ													Х									L
S1	1.00	1140			Γ													Х									L
S5	1.00	1142					İ											Х									
S10	1.00	1144					İ											х									
ICV	1.00	1146																Х									L
ICB	1.00	1147		1		Ī	İ											Х									L
CRA		1149		T	İ		Ī											Х									L
CCV		1151		İ	İ		İ			i								Х									
ССВ		1152		T			Ī	Π									П	х			Ī						
ZZZZZZ		1154		1	i		i	Г	Ī																		Γ
ZZZZZZ		1156		╁				一									Πİ										Γ
ZZZZZZ		1158		T			1		Ī	i														Γ			Γ
ZZZZZZ		1200		 				 	T							Г						ĺ	Γ				Γ
ZZZZZZ		1202		T	 	T	 		1	Ī	<u> </u>										Ī	Γ					Ī
ZZZZZZ		1204		\vdash	<u> </u>	I^-	i	\vdash	T	 	i				1		П					Γ		Ī			Ī
ZZZZZZ	1.00		<u> </u>	t^-	<u> </u>	十一	1	i	T			İ	<u> </u>	T	1						Ī	Γ			İ		T
ZZZZZZ	1.00			t^-	\vdash	1	 	1	\vdash		<u> </u>		l							Г	İ		Γ				Ī
ZZZZZZ		1209	l	╁╴		 	1	┢	\vdash	<u> </u>		 	<u> </u>	T	一						Ī		Ī	Ī		Γ	T
CCV		1211		╁╌	\vdash	╁			\vdash	╁	<u> </u>	\vdash	<u> </u>	T			П	Х			Π		i –				T
ССВ		1212		十	+-	${\dagger}$	\vdash	 	十	1	<u> </u>	T	<u> </u>	1				х		Г	Ī	T	Γ		İ	Γ	T
ZZZZZZ		1214	! !	╁	十一	\vdash	 	╁	\vdash	\vdash	 	十	 	\vdash	1	<u> </u>	П				$\overline{\Gamma}$	1		Π	İ	Г	t
ZZZZZZ		1216	<u> </u>	+	<u> </u>	1	╁	\vdash	-	十一	<u> </u>		<u> </u>	\vdash	┢		П		<u> </u>	<u> </u>	T	İΤ		 	1	Г	t
ZZZZZZ		1217		+-	\vdash	╁─	\vdash	╁╴	t	十	\vdash	I^-		一		一					T		T		厂	Γ	T
ZZZZZZ		1219]	十	${\dagger}$	\vdash	╁	\vdash	t	十		1	 	╁	t^-	\vdash				İΤ		1		Ī	T	Π	T
ZZZZZZ		1221	<u> </u>	+-	\vdash	╁╴	 	╁╴	t	╁	\vdash	十	╁	T		T					T	Т		İ	T	Γ	t
ZZZZZZ		1223	<u> </u>	╁╴	\vdash	+	十	十	T	1	 	T	一	\vdash	T	 					T	T		Ī	İ	Ĺ	t
ZZZZZZ		1225	1	十	╁	+	1	╁╴	╁	 		十	\vdash	十一	1	╁╴	\vdash		-		T	1	T		1	Γ	t
ZZZZZZ		1227	<u> </u>	+	┨	+	$^{+}$	╁─	\vdash	╁	<u> </u>	╁┈	<u>!</u>	T	\vdash	╁		<u> </u>		T	t	十	T			T	t
ZZZZZZ		1228	1	╁	+	+	╁	\vdash	╁	\vdash	╁	T	 	T	+	T	1	\vdash	T		╁	1	T	 	T	丅	†
CCV		1230	1	+	╁╴	+	+	╁╴	\vdash	十	\vdash	+	\vdash	十	T	H	T	х	\vdash	T	T	1	T		T	T	†
ССВ		1232	 	十	+	+	+	-	+	╁	╁	\vdash	\vdash	T	f	十	十	Х	-	T	 	T	T	T	T	丅	†
ZZZZZZ		1234	<u> </u>	+	+	+	+	+-	+	 	╁	\dagger	╁	\vdash	t	H	†		T	Τ	1	\dagger	\dagger	T	T	T	†
ZZZZZZ		1234	<u> </u>	+	╁	+	╁	十	\vdash	$\frac{1}{1}$	-	+	$\frac{L}{L}$	T	\vdash	╁	T	\vdash	╁╴	\vdash	╁╴	T	T	十	T	\vdash	†
ZZZZZZ		1239	 	+-	+	+-	 	+	╀	+	╀	╀	+	╀	╀	+	+-	 	-	╀	+-	+	+	╁	+	t^{-}	†

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

EPA												P	na	ly	te:	s									
Sample No.	D/F	Time	% R	A	S B	A S	B A	B E		C A	1	C U	F E			M N		N I	S E	A G	N A	- 1	· 1	Z N	1
ZZZZZZ	1.00	1240																							
ZZZZZZ	1.00	1242																							L
PBW0814G	1.00	1244		Ī													Х								L
LCSW0814G	1.00	1246															X								L
ZZZZZZ	1.00	1248		Π																					L
ZZZZZZ	1.00	1250			Ī	Π																			L
CCV	1.00	1252	ĺ														Х								L
CCB	1.00	1254	1	Ī		Ī	İ					Ī					х								

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

EPA													Į	\na	1y	te	s										\neg
Sample No.	D/F	Time	% R	A L	S B	A S	B A	B E	C D	C A			C U		P B			H G	N I		S E	A G	N A	- 1	V	Z N	C N
S0	1.00	1332																X								\Box	
S0.2	1.00	1334																X									
S0.5	1.00	1336																х			<u> </u>						
S1	1.00	1338																X		L							_
S 5	1.00	1339																X					\bigsqcup			Щ	_
S10	1.00	1341	٠															X		L			Ш				
ICV	1.00	1343		Γ														X								Ц	
ICB	1.00	1345																Х								\Box	
CRA	1.00	1347																Х							$_$		
CCV	1.00	1349					Π	Π										X									
CCB	1.00	1350					1											Х									
ZZZZZZ	1.00	1352																				<u> </u>					
ZZZZZZ	1.00	1354																<u> </u>								Ш	
ZZZZZZ	1.00	1356									L									L						Ш	
ZZZZZZ	1.00	1358			Π																					Ш	
IDOLADSFW12	1.00	1400										L						Х	L							Ц	_
IDOLADSFW12F	1.00	1402							<u> </u>					<u>L</u>				Х	ļ	L						Ц	
IDOLPDSFW13	1.00	1404				Ĺ					L							x					<u> </u>				
IDOLPDSFW13F	1.00	1406														L		x						Ш		Ш	_
IDOLSTPW05F	1.00	1408											<u></u>					x			L	L	<u></u>			Ш	_
ccv	1.00	1409													L.,	L		х		L		<u> </u>	_	Ш		Щ	
CCB	1.00	1411																x		L						Ш	
IDOLSTSFW05	1.00	1413														L		х				L	L			Ш	
IDOLSTSFW05F	1.00	1414											Ĺ					Х	L							Ш	
ccv	1.00	1416																Х				L				Ш	
ССВ	1.00	1418		Π			Ī	1					Γ					x			L					ot	L

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Leeman Hydra AA Method: CV

EPA				l .										ma	ly.	te	s										_
Sample	D/F	Time	% R	A	s	Α		. 1	С	С		C								K					٧		
No.				L	В	s	A	E	D	A	R	0	U	E	В	G	N	G	Ι		E	G	Α	L		N	L
s0·	1.00	1545																X									
s0.2	1.00	1547			i													Х									
s0.5	1.00	1549		Ī			<u> </u>											X									
S1	1.00	1551																Х									
\$5	1.00	1552																Х									
s10	1.00	1554			· .		Ì				-							X									
ICV	1.00	1556				·	Ì											X									
ICB	1.00	1558		İ									Ī					Х									
CRA	1.00	1559						Ī										Х									Ĺ
CCV	1.00	1601		T	ĺ	Π		Γ				Γ						Х									L
ССВ		1603		ĺ		İ					Ī	1						Х									
ZZZZZZ	1.00	1605		İ		Π	İ				<u> </u>																Ĺ
ZZZZZZ	1.00			İ	T	Τ	Ī		Γ	Ī	<u> </u>	Γ					П								\prod		I
ZZZZZZ	1.00	1609		丅	Ī	T	Ī		Π	İ	İ	Γ	Γ			Ì							П	Γ			Γ
ZZZZZZ		1611		1		<u> </u>	İ			İ		Γ	İ								Ī	Π				П	Ī
ZZZZZZ		1613		T	İ							Ī	1								Ī			Π			Ī
ZZZZZZ		1614		T						Π			Π			Ī					Ì						Ι
ZZZZZZ	1.00	1616		†	M	İ	İ			İ	<u> </u>	İ	Ī														Ι
ZZZZZZ	1.00	1618		1						Π						1											
ZZZZZZ		1620		1		1	İ				<u> </u>	Π									Ī		Ī	Π	Γ		Ī
CCV		1622		1		İ	i			İ		T				Γ		х			Ī		Г	Π	Π		Ι
ССВ		1623	İ	1	1	İ	İ			İ			Ī	Γ	İ	Ī		Х				Π			Γ		T
ZZZZZZ		1625		T		1	Ì			Ī	Ī	İ	Ì			Π	Ī				Ì				Π		Τ
ZZZZZZ		1627		T	İ	T	i			İ	Ì		Ī		İ	Γ						Π		Π	Π	Γ	T
ZZZZZZ	1.00			T	1	1	Ī	T		Ī		İ	Ì		Π	Γ	Π		Ī			Π	П		Π		T
ZZZZZZ	1.00	1631		T	1	T			Γ	i –	İ	Ī	Ì			Π	İ		Ī			Π	Π	Γ	Π		T
ZZZZZZ		1632		1	T	†	i		Π	i	Ī	Ī	Γ	1		Ì	İ				Ī	П		Π	T	Ī	T
PBW0814D		1634		1	Ħ	T	T	T	Ī	1	İ	T	İ	Ī	Ī		Ī	X		Γ	Ī	Π	Π	Γ	Π	T	T
LCSW0814D		1636		1	T		T	1	Ī	i	Ī	T	Ī	Ī			1	х		Γ	Ī	Π		Π	T	Π	T
IDOLPDSFW14		1638		十	T	1	i	T	Ī	İ	İ	T	Ī	Π	İ			Х		ĺ	Ī	Ī	Π	Γ		Τ	Ī
IDOLPDSFW14F		1640		1	T	1	i	†	T	İ	İ		Ī	1	İ	İ	T	x		Π	Ī	Π		Ī	T	T	T
CCV		1641	<u> </u>	T	1	i	i	1	Γ	İ		T	T				İ	х	T	Π	Ī	T	Ī	Ī	T	T	Ī
ССВ		1643		1		1	Î	T		Ī		T	İ	İ	İ		T	х	1	Ī	Ī	T	Γ	Ī	Τ	Π	Ţ
IDOLSTSFW06		1646		1	1		T	T	Π	T	İ	T	Ī	T	İ	T	Ī	x	ī	Ī	Ī	T	Ī	Π	T	Γ	Ţ
IDOLSTSFW06F		1648		T	1	T	İ			T	Ī		Ī		Ī	T	Π	x	Π	Γ	Ī	Γ			Τ	Τ	Ţ
IDOLSTPW06F	<u></u>	1650		T	1	T	T	1	T	T	İ	T	Ī	İ	İ	Ī	T	X	ī	Γ	Ī		T	Π	Τ	Π	T
IDOLSTPW07F		1651		T	1	T	T	T	T	T	İ	T	T	T	Γ	T	T	x	1	İ	T	T	T	Ī	T	T	Ť
IDOLSTPW07FS		1653	<u> </u>	+	+	T	+	\vdash	1	十	 	t	t	T	1 -	T	T	x	1	T	T	\dagger	\top	Ť	T	1	T

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDW001

Instrument ID Number: Leeman Hydra AA Method: CV

EPA										-			7	na	ly	te.	s		_								
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F,	P	М	М	Н	N	K	S	A	N	T	v	Z	С
No.		:		L	В	s	A	E	D	A	R	0	บ	E	В	G	И	G	I		E	G	A	L		И	N
IDOLSTPW07FD	1.00	1655																Х									
IDOLSTPW07100F	1.00	1657																Х									
IDOLSTSFW07	1.00	1659																Х									
IDOLSTSFW07\$	1.00	1700																Х									
CCV	1.00	1702																Х									
CCB	1.00	1704																X									
IDOLSTSFW07D	1.00	1707																X									<u></u>
IDOLSTSFW07F	1.00	1708																X									<u></u>
IDOLSTSFW07FS	1.00	1710																Х									<u></u>
IDOLSTSFW07D	1.00	1712																Х									L
IDOLSTSFW07100	1.00	1714																Х									
IDOLSTSFW07100F	1.00	1716																Х									_
ZZZZZZ	1.00	1718																									
ZZZZZZ	1.00	1720					1																				L
ZZZZZZ	1.00	1722																									L
ccv	1.00	1724																X									
ССВ	1.00	1726																Х									

STL Burlington Colchester, Vermont

Sample Data Summary Package

SDG: IDD001

September 22, 2003

Ms. Cathy Bohlke
EA Engineering
12011 Bellevue-Redmond Rd.
Suite 200
Bellevue, WA 98005

Re: Laboratory Project No. 23046

Case No. 23046; SDG: IDD001

Dear Ms. Bohlke:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 25, 2003. Laboratory numbers have been assigned and designated as follows:

Lab ID	Client Sample ID	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 07/25/03 ETR No	: 95004	
535843 535844	IDOLSTSSD05 IDOLPDSSD14	07/22/03 07/22/03	Sediment Sediment
535844MS	IDOLPDSSD14MS	07/22/03	Sediment
535844DP 535845	IDOLPDSSD14REP IDOLPDSSD14100	07/22/03 07/22/03	Sediment Sediment
535846	IDOLPDPSD13	07/22/03 07/22/03	Sediment Sediment
535847 535848	IDOLADPSD12 IDOLSTPSD07	07/22/03	Sediment
535849	IDOLSTSSD06	07/22/03	Sediment

Due to reporting software limitations, sample identifications may have been truncated. In most instances only punctuation was removed.

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample login is included in the Sample Handling section of this submittal. Please note that the sample identified as IDOLSTSSD06 was received but not listed on the chain-of-custody form. The laboratory assigned analyses based on information listed on sample containers. Also note that in most instances the chain-of-custody form indicated that three sample containers were received but the laboratory only received two containers which was plenty for the analyses requested.

The analysis for cyanide was performed by STL's North Canton facility, as approved by EA Engineering. STL North Canton assigned "Lot" numbers as samples were received. Though laboratory numbers may differ, the client's sample identifications were maintained. The results for this delivery group including a case narrative prepared by the North Canton laboratory are attached to this report.

Ms. Cathy Bohlke September 22, 2003 Page 2 of 2

This narrative identifies anomalies that occurred during the analyses of samples in this delivery group. If there is no description following regarding a certain methodology requested on the chain-of-custody record, then there were no exceptions to the laboratory quality control criteria noted during that analysis.

Metals by 6010B:

The percent difference between the original determinations and serial dilution determinations for the following metals in sample in sample IDOLPDSSD14 were above the control criteria of ±10 percent: aluminum, arsenic, barium, cadmium, calcium, iron, lead, magnesium, manganese, nickel, vanadium, and zinc. Matrix interference is suspected and results have been flagged with an "E" accordingly.

The relative percent difference (RPD) between the initial and duplicate analysis of sample IDOLPDSSD14 for cadmium (22.8) was above the established control limit of ±20 percent. Corresponding sample results have been flagged with a "*" to denote this anomaly.

The recoveries of antimony (36.3 percent) and cadmium (133.3 percent) from the laboratory fortified aliquot of sample IDOLPDSSD14 were outside of the laboratory established control limits of 75-125 percent. Sample results have been flagged with an "N" accordingly.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 0476.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The Laboratory Director or his designee, as verified by the following signature, has authorized the release of the data contained in this hardcopy data package.

Sincerely.

Michael F. Wheeler, Ph.D.

Laboratory Director

Enclosure MFW/jtw/jmm

0001B last elpho

(802) 655-1248

SEVERN TRENT LABORATORIES, INC. SEVERN TRENT

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD Sheet 1 0 2

STL cannot accept verbal changes. Please Fax written changes to	0 - 0ii	Sludge	SL - or other	Charco P/O	c	r 250 ml - Glass wide mouth	Amber / Or Glass 1 Liter	A/G - Amber	- 40 ml vial	er VOA	² Container
Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	Client's delivery of samples constitutes acceptance of terms and conditions contained in the Price Schedule.	Client's deli	Time	1 1		: (Signature	, =	D	ature)	Relinquished by: (Signature)	Relinquish
			Time	Date		Received by: (Signature		Date	ature)	Relinquished by: (Signature)	Relinquish
		Remarks	1ime	Date /25/or		Received by: (Signature	13 0900	7/24/03	ature)	Relinguished by: (Stenature)	Reling
			XX			-14-MS	10-SSD	19-19DD	TA	6	
		\times	× ×			-14-100	D-SSD-14	IDOL-PD	H		
		/	7	3		ナ	D-55D-	TDOL-PD	1	13	ļ
		<u>人</u>	メ	100		20	- SSD-	1001-ST-SSD	7	7/24/200	1 35
		×	X			11- RICE	A-PLT-	IDOL-T	Ţ	1600	٠.
		X	×			-09-BICE	WP- PILT-	M-1 ad	1	17110	
		X	×			MS-PICE	COOL-TA-PLT-10-MS-	DU-TA-	日日	<	<
		XXX	×			10-100-RICE	PLT-10-	DOL-TA-	13)		
		XX	>			10-RICE	211-	- UL - 10CE	Ħ	(exp	<u></u>
		XX	/			1001-80/PE-PLT-D8-PILE	E-PLT-1	21-861/2	XID	1/22/02/230	(155)
Lab/Sample ID (Lab Use Only)		CA	Ira Tota Tota	P/0	VOA A/G		of Sample(s)	Identifying Marks of Sample(s)	_ გა ი ი	ite Time	Matrix ¹ Date
		noge	(14 S		No/Type of Containers?		y Mine	1387.01-0002 Idol City	Project Name	09-00	Proj. No.
	- 9	Pain AL	din			Kerens later	Ken		Coser	Savant. Kosch	Ž.
	az 	m	De la			Sampler's Signature	Sannpler'			Name	Sampler's Name
For Radioactivity	702	ota						MINE	C174	e: 100L	Contract/ Quote:_
Screened	<u> </u>	es	_			Fax:		8	451- 7800	x 425- 451-	Fax:
		_	_			ne:	Phone:	CO × 144	451 - 7400	135H	Phone:
Seal N/Y		_	_			act:	Contact:	NE	4 BOHLKE	t CATHY	Contact:
1 2 3 4 5		_						78005	Vue, LUA	BELLEVINE	
when received (C°):						SS:	Ro. Address:	DIMONO	BEHEWE	11001	Address:
	_	<u> </u>	Requested			NY: SAME	Company:	L)A	ENGINEERING	EA	Company:_
Lab Use Only Due Date:		_	ANALYSIS			Invoice to:	<u> </u>		Report to:		

TIRENT SILBurlington 208 South Park Drive, Suite 1 SEVERN TRENT LABORATORIES, INC. Colchester, VT 05446 Tel 802 655 1203

Sheet 2 of 2 CHAIN OF CUSTODY RECORD

(802) 655-1248					
ge 0 - Oil STL cannot accept verbal changes.	SL - Sludge or other	C - Charcoal Tube : th P/O - Plastic or other	 Soil L - Liquid A - Air bag Slass 1 Liter 250 ml - Glass wide mouth 	Wastewater W - Water S - Soil 40 ml vial A/G - Amber / Or Glass 1 Liter	² Container VOA -
Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	Time C	Date	Time Received by: (Signature	Date	shed by:
	Time	Date	Time Received by: (Signature	Date	Relinquished by: (Signature)
Remarks	Time R	Date 7/2=/03	OTWO Received by: (Signature	1) Date 1711 103	Retriquished by (Signature)
					7
			15D - 07	1 DDDL-ST-	GINI P A
			PSD-12	1001-AD-	1000
			PSD-13	X IDDU-PD-F	CECOI NICOLA
Lab/Sample ID (Lab Use Only)		1 Lt. 20 P/O	voa	Identifying Marks of Sample(s)	Date
	(J)	No/Type or Managemers?		- <i>₩</i> <u>ख</u>	1389.09-0001
	ACM	<u> </u>	Support software	SU	S Name
Screened For Radioactivity	etals			CITY MINE	Quote: IDor-
Intact N/Y	~C		Fax:	1	Fax: 435: 451. 7800
ty Seal	W_		Phone:	5-1	Phone: 435-451-7400
1 2 3 4 5			Contact:	ROHLKE	Contact: (ATHY
Temp. of coolers when received (Co).	_		1	12011 BELLEVILE- REDMOND &	Address: 12011
Lab Use Only Due Date:	ANALYSIS /	7	Invoice to:	Report to:	R Company: EA E

STL8234-200 (12/02)

Sample Data Summary Package For Wet Chemistry

Sample Report Summary

Client Sample No.

IDOLSTSSD05

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535843

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 74.5

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		74.5	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	135	12200	
				·				
			•					
!								
						:		
:								
:								
i i								
:								,
:								
1 - -					-			
:								
	1	1	l	l i		l	1	1 1

Printed on: 09/19/03 09:24 AM

Sample Report Summary

Client Sample No.

IDOLPDSSD14

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535844

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 39.3

	Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
Ī	IN623	Solids, Percent	07/29/03	N/A	%	1.0		39.3	
	IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	255	42200	
							,		
					-				1
1									
	;								
							•		
			· ·						
			ı						
İ									
	:						<u>.</u>		
							•		

Printed on: 09/19/03 09:26 AM

Sample Report Summary

Client Sample No.

IDOLPDSSD14100

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535845

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 43.8

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		43.8	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	229	39600	
				1				
		i						
								İ
		1				İ		
						İ	:	:
							•	ļ
						1		

Printed on: 09/19/03 09:27 AM

Sample Report Summary

Client Sample No.

IDOLPDPSD13

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535846

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 64.5

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		64.5	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	156	15400	
							٠	
1								
. :								
:								
:								
:								
					:			
			`					

Printed on: 09/19/03 09:28 AM

Sample Report Summary

Client Sample No.

IDOLADPSD12

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535847

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 56.2

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		56.2	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	178	18100	
	, ••• •, •••, •••••							
		i.		1				
:								
·								
:								
			, 5					
		:						
				·				
i								

Printed on: 09/19/03 09:28 AM

Sample Report Summary

Client Sample No.

IDOLSTPSD07

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535848

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 65.3

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		65.3	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	154	12100	
						i 		
						;		
							:	
!								
:			· :		•			
						l		
:						:		
								<u> </u>
:								

Printed on: 09/19/03 09:29 AM

Sample Report Summary

Client Sample No.

IDOLSTSSD06

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535849

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 80.3

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		80.3	
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	1	125	2060	
114047	100 by Lloyd Kallii	01723733	5211211012011					
·								
			,	-				
			-					
						[
						ĺ		
				ĺ				
						1		
:								
:							1	

Printed on: 09/19/03 09:29 AM

Method Blank Report Summary

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Matrix: SOIL

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Conc.	Units	Qual.	DF	RL	Analytical Run Date	Analytical Batch
BLKLK0729A	IN847	TOC by Lloyd Kahn	100	mg/Kg	U	1	100	07/29/03	BLKLK0729A
İ									
i									
	:								
	;								
							÷		
	:								

Printed on: 09/19/03 09:30 AM

Matrix Spike Sample Report Summary

Client Sample No.

IDOLPDSSD14MS

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535844MS

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids:

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Matrix S Resi Conc.	Spike ult Qual.	Samı Res Conc.	ole ult Qual.	Spike Added	% Recovery*
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg			42200		201564	97.8
					:					
·										
				i						
										:

* Control Limit for Percent Recovery is 75-125%, unless otherwise specified.

Printed on: 09/19/03 09:26 AM

Duplicate Sample Report Summary

Client Sample No.

IDOLPDSSD14REP

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535844DP

Matrix: SEDIMENT

Client: EASEAT

Date Received: 07/25/03

% Solids: 44.6

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Samp Resi Conc.	ult	Dupli Sample Conc.	cate Result Qual.	RPD*
IN623	Solids, Percent	07/29/03	N/A	%	39.3		44.6		13
IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	42200		49700		16
					-				
					:				
			:						
			•						
						:			
					<u> </u>				
	•			1	1	1	1	I	I

* Control Limit for RPD is +/- 20%, unless otherwise specified.

Printed on: 09/19/03 09:25 AM

Laboratory Control Sample Report Summary

Lab Name: STL BURLINGTON

Contract: LSO1024805

SDG No.: IDD001

Lab Code: STLVT

Case No.: 23046

Matrix: SOIL

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Analytical Run Date	Analytical Batch	Units	LCS Conc.	True Value	% Recovery*
LCSLK0729A	IN847	TOC by Lloyd Kahn	07/29/03	BLKLK0729A	mg/Kg	8730	8500.0000	
						,		

^{*} Control Limit for Percent Recovery is 80-120%, unless otherwise specified.

Printed on: 09/19/03 09:31 AM

Sample Data Summary Package For Metals

USEPA - CLP

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

ab Name: STL	BURLINGTON Cor	ntract: 23046	
ab Code: STL	VT Case No.: 23046	SAS No.:	SDG No.: IDD001
OW No.: ILM	04.1		
	EPA Sample No.	Lab Sample ID.	
	IDOLADPSD12	535847	
	IDOLPDPSD13	535846	
	IDOLPDSSD14	535844	
	IDOLPDSSD14100	535845	
	IDOLPDSSD14D	535844DP	
	IDOLPDSSD14S		
	IDOLSTPSD07	535848	
	IDOLSTSSD05	535843	
	IDOLSTSSD06	535849	
			•
- -			
•			
Were ICP into	erelement corrections applied?		Yes/No YES
Were ICP bad	kground corrections applied?		Yes/No YES
	were raw data generated before		
applica	tion of background corrections?		Yes/No NO
mments:			
. cortification	at this data package is in compl	liance with the terms	and conditions of the
	th technically and for completer		
	ase of the data contained in thi		
	dable data submitted on diskette		
	he Manager's designee, as verifi		
ignature:		Name:	
rghacute.			
		Title:	
ate:		******	

COVER PAGE - IN

USEPA - CLP

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

_			
	IDOLADPSD1	.2	

Lab Name:	STL BURLIN	GTON	Contract	: 23046	<u>L</u>	
Lab Code:	STLVT	Case No.: 23	046 SAS No	o.:	SDG No.:	IDD001
Matrix (so	il/water):	SOTT	,	Lab Sample ID:	535847	

Date Received:

7/25/2003

% Solids: 56.2

Level (low/med):

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	I	[Т.	I	T
CAS No.	Analyte	Concentration	C	Ω	М
7429-90-5	Aluminum	9380	İ	E	P
7440-36-0	Antimony	10.0	В	N	P
7440-38-2	Arsenic	510		E	₽
7440-39-3	Barium	243		E	P
7440-41-7	Beryllium	0.48	В		P
7440-43-9	Cadmium	0.10	ען	NE*	P
7440-70-2	Calcium	16100		E	P
7440-47-3	Chromium	3.6	1		P
7440-48-4	Cobalt	14.0			P
7440-50-8	Copper	22.0			P
7439-89-6	Iron	63500		E	P
7439-92-1	Lead	12.0		E	P
7439-95-4	Magnesium	1480		E	P
7439-96-5	Manganese	2570	1	E	P
7439-97-6	Mercury	0.15			CV
7440-02-0	Nickel	7.3		E	P
7440-09-7	Potassium	1680			P
7782-49-2	Selenium	3.2			P
7440-22-4	Silver	0.37	U		P
7440-23-5	Sodium	202	В		P
7440-28-0	Thallium	0.96	U		P
7440-62-2	Vanadium	20.8		E	P
7440-66-6	Zinc	76.3		E	P

Color Bef	ore: b	rown	Clarity Before:		Texture:	medium
Color Aft	er: p	ale yellow	Clarity After:	clear	Artifacts:	
Comments:	:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLP	DPSD13	

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDD001
Matrix (so:	il/water): SOIL	Lab Sample ID:	535846
Level (low,	/med): LOW	Date Received:	7/25/2003

% Solids: 64.5

		T	T	r	
CAS No.	Analyte	Concentration	C	Ω	M
7429-90-5	Aluminum	8020		E	P
7440-36-0	Antimony	2.3	В	N	P
7440-38-2	Arsenic	68.8		E	P
7440-39-3	Barium	226		E	P
7440-41-7	Beryllium	0.47	В		P
7440-43-9	Cadmium	0.15	В	NE*	P
7440-70-2	Calcium	3560		E	P
7440-47-3	Chromium	4.2			P
7440-48-4	Cobalt	7.5	B		P
7440-50-8	Copper	27.3			P
7439-89-6	Iron	17300	<u> </u>	E	P
7439-92-1	Lead	14.8	1	E	P
7439-95-4	Magnesium	1630		E	P
7439-96-5	Manganese	320	1	E	P
7439-97-6	Mercury	0.23			cv
7440-02-0	Nickel	11.4		E	P
7440-09-7	Potassium	1410	1	<u> </u>	P
7782-49-2	Selenium	0.90			P
7440-22-4	Silver	0.33	שן	-	P
7440-23-5	Sodium	193	В		P
7440-28-0	Thallium	0.87	שן		P
7440-62-2	Vanadium	16.7		E	P
7440-66-6	Zinc	60.1		E	P

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

EPA	SAMPLE	NO.	

						IDOLPDSSD14	
Lab Name:	STL BURLIN	GTON	Contract:	23046			
Lab Code:	STLVT	Case No.: 23046	SAS No.		SDG No.:	IDD001	
Matrix (so	il/water):	SOIL	Lal	Sample ID:	535844	•	

Date Received:

7/25/2003

% Solids: 39.3

LOW

Level (low/med):

	1		Т	Т	T 1
CAS No.	Analyte	Concentration	C	Q.	М
7429-90-5	Aluminum	25400	1	E	P
7440-36-0	Antimony	7.5	ļΒ	И	P
7440-38-2	Arsenic	118		E	P
7440-39-3	Barium	618		E	P
7440-41-7	Beryllium	1.3			P
7440-43-9	Cadmium	11.9	1	NE*	P
7440-70-2	Calcium	10700	1	E	P
7440-47-3	Chromium	11.2	1		P
7440-48-4	Cobalt	15.1		1	P
7440-50-8	Copper	84.8	İ	1	P
7439-89-6	Iron	46300		E	P
7439-92-1	Lead	486		E	P
7439-95-4	Magnesium	2990		E	P
7439-96-5	Manganese	577		E	P
7439-97-6	Mercury	4.1		[CV
7440-02-0	Nickel	26.5		E	P
7440-09-7	Potassium	3530			P
7782-49-2	Selenium	2.5	I	l	P
7440-22-4	Silver	1.3	В	l	P
7440-23-5	Sodium	351	В		P
7440-28-0	Thallium	1.4	ען	1	P
7440-62-2	Vanadium	39.6		E	P
7440-66-6	Zinc	2050		E	P

Color Before:	brown	Clarity Before:	•	Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDO	LPDSSD	14100	
			-

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): SOIL Lab Sample ID: 535845

Level (low/med): LOW Date Received: 7/25/2003

% Solids: 43.8

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	19800		E	P
7440-36-0	Antimony	6.4	В	И	P
7440-38-2	Arsenic	144		E	P
7440-39-3	Barium	604	1	E	P
7440-41-7	Beryllium	1.1	В		P
7440-43-9	Cadmium	14.1	1	NE *	P
7440-70-2	Calcium	7550		Ε	P
7440-47-3	Chromium	9.3			P
7440-48-4	Cobalt	10.6	В		P
7440-50-8	Copper	75.1			P
7439-89-6	Iron	42100		E	P
7439-92-1	Lead	462		E	P
7439-95-4	Magnesium	2290		E	P
7439-96-5	Manganese	378		E	P
7439-97-6	Mercury	4.0			CV
7440-02-0	Nickel	18.6		E	P
7440-09-7	Potassium	2840			P
7782-49-2	Selenium	2.0			P
7440-22-4	Silver	1.3	В		P
7440-23-5	Sodium	262	В		P
7440-28-0	Thallium	1.3	U		P
7440-62-2	Vanadium	32.0		E	P
7440-66-6	Zinc	1560		E	P

Color	Before:	brown	Clarity Before:	-	Texture:	medium
Color	After:	pale yellow	Clarity After:	clear	Artifacts:	
Commer	nts:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTPSD07	

		l l
Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDD001
Matrix (soil/water): SOIL	Lab Sample ID:	535848
Level (low/med): LOW	Date Received:	7/25/2003

% Solids: 65.3

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	10600		E	P
7440-36-0	Antimony	2.7	В	N	P
7440-38-2	Arsenic	45.7		E	P
7440-39-3	Barium	221		E	P
7440-41-7	Beryllium	0.62	В		P
7440-43-9	Cadmium	0.089	U	NE *	P
7440-70-2	Calcium	3170	1	E	P
7440-47-3	Chromium	6.3			P
7440-48-4	Cobalt	9.0]		P
7440-50-8	Copper	23.3		1	P
7439-89-6	Iron	28400	T	ĮΕ	P
7439-92-1	Lead	10.3		E	P
7439-95-4	Magnesium	1890		E	P
7439-96-5	Manganese	533	1	E	P
7439-97-6	Mercury	0.23		1	cv
7440-02-0	Nickel	8.5		E	P
7440-09-7	Potassium	1870			P
7782-49-2	Selenium	1.5		1	P
7440-22-4	Silver	0.33	ט		P
7440-23-5	Sodium	227	В		P
7440-28-0	Thallium	0.85	טן		P
7440-62-2	Vanadium	28.7	1	E	P
7440-66-6	Zinc	77.5		E	P

Color Befo	re: brown	Clarity Before:		Texture:	medium
Color Afte	r: pale yellow	Clarity After:	clear	Artifacts:	
Comments:					

USEPA - CLP -1-

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.
IDOLSTSSD05

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDD001
Matrix (soil/water): SOIL	Lab Sample ID:	535843
Level (low/med): LOW	Date Received:	7/25/2003

% Solids: 74.5

			_	T" "	
CAS No.	Analyte	Concentration	С	Ω	М
7429-90-5	Aluminum	18000		E	P
7440-36-0	Antimony	4.6	В	N	P
7440-38-2	Arsenic	142		E	P
7440-39-3	Barium	422		E	P
7440-41-7	Beryllium	1.1	1		P
7440-43-9	Cadmium	6.3		NE*	P
7440-70-2	Calcium	2680		E	P
7440-47-3	Chromium	3.2			P
7440-48-4	Cobalt	20.4			P
7440-50-8	Copper	83.1	Ī		P
7439-89-6	Iron	42100		E	P
7439-92-1	Lead	1190		E	P
7439-95-4	Magnesium	779		E	P
7439-96-5	Manganese	747		E	P
7439-97-6	Mercury	2.5	1		CV
7440-02-0	Nickel	20.3	Ϊ	E	P
7440-09-7	Potassium	1540			P
7782-49-2	Selenium	2.1			P
7440-22-4	Silver	1.5		,	P
7440-23-5	Sodium	198	В		P
7440-28-0	Thallium	0.92	В		P
7440-62-2	Vanadium	10.8		E	P
7440-66-6	Zinc	1660		E	P

Color	Before:	brown	Clarity Before:		Texture:	medium
Color	After:	pale yellow	Clarity After:	clear	Artifacts:	
Commen	its:					
	! -					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLSTS	SD06	

Lab Name:	STL BURLING	GTON	Contract: 23046	
Lab Code:	STLVT	Case No.: 23046	SAS No.:	SDG No.: IDD001
Matrix (so	il/water):	SOIL	Lab Sample ID:	535849

Date Received:

7/25/2003

% Solids: 80.3

Level (low/med):

<u></u>	T.,-	T	т—	T	r
CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	11200		E	P
7440-36-0	Antimony	1.5	В	N	P
7440-38-2	Arsenic	20.3		E	P
7440-39-3	Barium	180		E	P
7440-41-7	Beryllium	0.48	B		P
7440-43-9	Cadmium	0.42	В	NE*	P
7440-70-2	Calcium	3380		E	P
7440-47-3	Chromium	6.3	1		P
7440-48-4	Cobalt	10.0			P
7440-50-8	Copper	19.8			P
7439-89-6	Iron	25700		E	P
7439-92-1	Lead	22.0	1	E	P
7439-95-4	Magnesium	5730	Ī	E	₽
7439-96-5	Manganese	540		E	P
7439-97-6	Mercury	0.39	1		CV
7440-02-0	Nickel	13.1		E	P
7440-09-7	Potassium	2360			P
7782-49-2	Selenium	1.2			P
7440-22-4	Silver	0.27	ט		P
7440-23-5	Sodium	124	В		P
7440-28-0	Thallium	0.69	טן		P
7440-62-2	Vanadium	27.5		E	P
7440-66-6	Zinc	186		E	P

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:	COLUMN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
_					

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibration	n	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum	26000.0	26330.00	101.3	30200.0	30860.00	102.2	30840.00	102.1	P
Antimony	250.0	256.00	102.4	300.0	318.50	106.2	315.80	105.3	Р
Arsenic	250.0	253.30	101.3	100.0	102.70	102.7	100.90	100.9	Р
Barium	500.0	504.40	100.9	200.0	205.50	102.8	205.60	102.8	P
Beryllium	500.0	512.00	102.4	100.0	101.90	101.9	102.30	102.3	P
Cadmium	500.0	500.40	100.1	100.0	100.90	100.9	100.70	100.7	P
Calcium	25000.0	25750.00	103.0	30200.0	31110.00	103.0	30990.00	102.6	P
Chromium	500.0	507.20	101.4	200.0	201.30	100.6	201.50	100.8	P
Cobalt	500.0	499.60	99.9	200.0	202.60	101.3	202.00	101.0	Р
Copper	500.0	511.10	102.2	200.0	208.10	104.0	209.20	104.6	P
Iron	25500.0	26520.00	104.0	30200.0	31040.00	102.8	30990.00	102.6	P
Lead	1000.0	1003.00	100.3	400.0	403.30	100.8	399.00	99.8	P
Magnesium	25000.0	25660.00	102.6	30200.0	30860.00	102.2	30790.00	102.0	P
Manganese	500.0	502.60	100.5	200.0	204.00	102.0	203.80	101.9	P
Mercury	3.0	2.73	91.0	5.0	4.93	98.6	4.77	95.4	CV
Nickel	500.0	504.90	101.0	200.0	201.30	100.6	201.60	100.8	P
Potassium	25000.0	26280.00	105.1	30200.0	31830.00	105.4	31840.00	105.4	P
Silver	500.0	506.20	101.2	100.0	103.70	103.7	104.60	104.6	P
Sodium	25000.0	25080.00	100.3	30200.0	30020.00	99.4	30530.00	101.1	P
Thallium	250.0	240.10	96.0	100.0	100.40	100.4	100.90	100.9	P
Vanadium	500.0	505.40	101.1	200.0	203.30	101.6	203.60	101.8	P
Zinc	500.0	509.50	101.9	200.0	206.20	103.1	205.80	102.9	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibratio	on	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum				30200.0	30830.00	102.1	31050.00	102.8	P
Antimony				300.0	314.80	104.9	318.30	106.1	Р
Arsenic				100.0	102.10	102.1	105.00	105.0	P
Barium				200.0	205.40	102.7	206.80	103.4	P
Beryllium				100.0	102.70	102.7	102.50	102.5	P
Cadmium	Ĺ			100.0	100.90	100.9	101.10	101.1	P
Calcium				30200.0	31040.00	102.8	31080.00	102.9	P
Chromium	j			200.0	202.00	101.0	201.40	100.7	P
Cobalt				200.0	202.40	101.2	202.30	101.2	P
Copper				200.0	208.30	104.2	210.20	105.1	P
Iron				30200.0	31100.00	103.0	31180.00	103.2	P
Lead		٠		400.0	400.80	100.2	398.90	99.7	P
Magnesium	Ĺ			30200.0	30890.00	102.3	30860.00	102.2	Р
Manganese				200.0	204.10	102.0	204.40	102.2	P
Mercury				5.0	4.87	97.4			cv
Nickel				200.0	201.50	100.8	202.00	101.0	P
Potassium				30200.0	31770.00	105.2	31840.00	105.4	P
Silver				100.0	103.80	103.8	103.20	103.2	P
Sodium				30200.0	30280.00	100.3	30300.00	100.3	P
Thallium				100.0	98.08	98.1	101.10	101.1	P
Vanadium				200.0	204.30	102.2	204.80	102.4	P
Zinc				200.0	206.50	103.2	207.40	103.7	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м	
Manganese	500.0	493.00 98.6	200.0	199.10	99.6	198.3	30 99.2	P	
Zinc	500.0	502.00 100.4	200.0	203.50	101.8	201.9	0 101.0	₽	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м	
Manganese			200.0	197.20	98.6	198.	50 99.3	P	
Zinc			200.0	201.00	100.5	201.1	100.6	Р	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м	
Selenium	250.0	258.00 103.2	100.0	102.70	102.7	98.7	9 98.8	P	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL	BURLINGTON	Contract:	23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initia	l Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Selenium			100.0	101.00	101.0	89.6	57 89.7	P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initia	l Calibratio	n		Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found 4	%R(1)	М
Aluminum	26000.0	26440.00	101.7	30200.0	30430.00	100.8	30390.00	100.6	P
Antimony	250.0	249.30	99.7	300.0	299.80	99.9	299.40	99.8	Р
Arsenic	250.0	245.80	98.3	100.0	100.40	100.4	99.21	99.2	P
Barium	500.0	493.80	98.8	200.0	200.40	100.2	199.70	99.8	P
Beryllium	500.0	500.80	100.2	100.0	99.35	99.4	99.46	99.5	P
Cadmium	500.0	490.40	98.1	100.0	98.27	98.3	98.03	98.0	P
Chromium	500.0	496.20	99.2	200.0	197.40	98.7	196.40	98.2	P
Cobalt	500.0	488.10	97.6	200.0	196.40	98.2	194.50	97.2	P
Copper	500.0	502.20	100.4	200.0	203.70	101.8	202.00	101.0	P
Iron	25500.0	26380.00	103.5	30200.0	30230.00	100.1	30010.00	99.4	P
Lead	1000.0	980.90	98.1	400.0	387.50	96.9	382.40	95.6	P
Manganese	500.0	492.20	98.4	200.0	199.00	99.5	198.80	99.4	P
Nickel	500.0	492.40	98.5	200.0	196.70	98.4	194.70	97.4	P
Silver	500.0	501.40	100.3	100.0	100.90	100.9	101.00	101.0	P
Thallium	250.0	239.80	95.9	100.0	100.70	100.7	94.07	94.1	P
Vanadium	500.0	495.00	99.0	200.0	199.20	99.6	197.80	98.9	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibrati	on		Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found 5	%R(1)	М
Aluminum				30200.0	30380.00	100.6	30490.00	101.0	P
Antimony				300.0	297.10	99.0	297.70	99.2	P
Arsenic				100.0	99.73	99.7	98.53	98.5	P
Barium				200.0	199.40	99.7	199.10	99.6	P
Beryllium				100.0	99.31	99.3	99.47	99.5	P
Cadmium				100.0	98.40	98.4	98.71	98.7	Р
Chromium				200.0	195.90	98.0	195.90	98.0	P
Cobalt				200.0	193.70	96.8	192.80	96.4	P
Copper				200.0	202.50	101.2	202.50	101.2	P
Iron				30200.0	29960.00	99.2	29950.00	99.2	P
Lead				400.0	383.20	95.8	382.40	95.6	P
Manganese				200.0	198.70	99.4	199.40	99.7	P
Nickel				200.0	194.00	97.0	193.90	97.0	Р
Silver				100.0	101.80	101.8	102.50	102.5	Р
Thallium				100.0	98.46	98.5	94.50	94.5	P
Vanadium				200.0	197.90	99.0	197.50	98.8	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2B-IN CRDL STANDARD FOR AA AND ICP

Lab	Name:	STL	BURLINGTON	Contract: 23046	

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

	1								
						CRDL Star	ndard	for ICP	
					Init	tial		Fina	1
Analyte	True	Found	&R	Ì	True	Found	*R	Found	%R
Aluminum					400.0	508.90	127.2	491.20	122.8
Antimony					120.0	126.90	105.8	128.00	106.7
Arsenic					20.0	20.38	101.9	21.61	108.0
Barium					400.0	399.30	99.8	401.50	100.4
Beryllium					10.0	10.20	102.0	10.29	102.9
Cadmium					10.0	10.16	101.6	10.13	101.3
Calcium					10000.0	10620.00	106.2	10590.00	105.9
Chromium					20.0	20.98	104.9	21.72	108.6
Cobalt					100.0	98.10	98.1	97.82	97.8
Copper					50.0	51.08	102.2	51.67	103.3
Iron					200.0	272.80	136.4	294.90	147.4
Lead					6.0	5.97	99.5	7.04	117.3
Magnesium					10000.0	10400.00	104.0	10370.00	103.7
Manganese					30.0	29.95	99.8	30.10	100.3
Mercury	0.2	0.17	85	.0					
Nickel					80.0	80.53	100.7	80.33	100.4
Potassium					10000.0	11670.00	116.7	11610.00	116.1
Silver					20.0	20.21	101.0	20.64	103.2
Sodium					10000.0	10180.00	101.8	10210.00	102.1
Thallium					20.0	18.78	93.9	19.33	96.6
Vanadium					100.0	99.31	99.3	99.30	99.3
Zinc					40.0	40.82	102.0	40.95	102.4

2B-IN

CRDL STANDARD FOR AA AND ICP

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

:					Initi	CRDL Standard :	for ICP Final
Analyte	True		Found	%R	True	Found %R	Found %R
Manganese		1		<u> </u>	30.0	30.81 102.7	31.15 103.8
Zinc		i			40.0	41.51 103.8	41.85 104.6

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: <u>SDG No.: IDD001</u>

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

						CRDL Standar	d f	or ICP	
•					Init	ial		Fina	1
Analyte	True	Found	%R		True	Found %	3.	Found	₹R
Selenium				Tİ	10.0	9.91 99	. 1	10.35	103.5

2B-IN CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLINGTON	Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: <u>SDG No.: IDD001</u>

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				Init	CRDL Standial	dard	for ICP Fina	1
Analyte	True	Found	%R	True	Found	%R	Found	%R
Aluminum	İ			400.0	517.00	129.2	504.20	126.0
Antimony				120.0	120.50	100.4	119.80	99.8
Arsenic	i			20.0	21.58	107.9	20.16	100.8
Barium	İ			400.0	394.30	98.6	392.50	98.1
Beryllium	İ			10.0	10.32	103.2	10.45	104.5
Cadmium	İ			10.0	9.96	99.6	9.96	99.6
Chromium				20.0	23.19	116.0	23.88	119.4
Cobalt	İ			100.0	97.11	97.1	94.75	94.8
Copper				50.0	51.62	103.2	50.95	101.9
Iron				200.0	291.50	145.8	292.90	146.4
Lead				6.0	5.68	94.7	4.86	81.0
Manganese				30.0	30.71	102.4	30.87	102.9
Nickel				80.0	82.48	103.1	80.63	100.8
Silver				20.0	20.07	100.4	20.75	103.8
Thallium				20.0	20.07	100.4	21.95	109.8
Vanadium				100.0	98.87	98.9	99.28	99.3

3 **BLANKS**

_____ Contract: 23046 Lab Name: STL BURLINGTON

Preparation Blank Matrix (soil/water): SOIL

Analyte	Initial Calib. Blank (ug/L)	С	1	C	ontinuing Ca Blank (ug			C.	Preparation Blank	С	м
Aluminum	23.6	U	23.6	ע	23.6	וט	23.6	U	-2.974	В	P
Antimony	4.7	U	4.7	ָּט	4.7	ַ	4.7	U	0.605	В	P
Arsenic	4.8	U	4.8	ַ	4.8	ַ	4.8	U	0.480	U	P
Barium	5.9	ט	5.9		5.9	ט	5.9	Ū	0.590	U	P
Beryllium	0.2	Ü	0.2	ט	0.2	ַ	0.2	บ	0.026	В	P
Cadmium	0.6	ט	0.6	ט	0.6	U	0.6	Ū	0.060	U	P
Calcium	182.1	U	182.1	ַ	182.1	ע	182.1	Ū	18.210	Ū	P
Chromium	1.5	В	4.6	В	5.8	В	7.8	В	0.140	U	P
Cobalt	2.0	U	2.0	ַ	2.0	U	2.0	บ	0.200	U	P
Copper	2.4	U	2.4	ן ט	2.4	ט	2.4	บ	0.240	U	P
Iron	33.3	U	33.3	ן ט	33.3	U	59.4	В	3.330	U	P
Lead	1.3	Ū	1.3	ן ט	1.3	U	1.3	ש	0.247	В	P
Magnesium	178.3	ָּט	178.3	ן ט	178.3	ַ	178.3	ט	17.830	U	P
Manganese	0.7	ŭ	4.7	В	4.8	В	5.0	В	0.070	U	P
Mercury	0.1	Ū	0.1	ן ט	0.1	ַ	0.1	Ü	0.017	U	CV
Nickel	2.1	Ū	13.0	В	13.0	В	13.8	В	-0.266	В	P
Potassium	393.0	U	393.0	ע	393.0	ט	393.0	บ	39.300	υ	P
Selenium						- 1			0.363	В	P
Silver	2.2	U	2.2	ַ ט	2.2	U	2.2	U	0.220	U	P
Sodium	472.7	U	472.7	U	472.7	U	472.7	U	86.750	В	P
Thallium	5.7	Ū	5.7	ט	5.7	U	5.7	U	-0.611	В	P
Vanadium	2.0	U	2.0	U	2.0	Ū	2.0	U	0.200	Ū	P
Zinc	1.0	U	1.0	U	1.0	ט	1.0	U	0.186	В	P

3

BLANKS

Lab	Name:	STL	BURLINGTO	N	(Contract:	23046			
Lab	Code:	ST	LVT	Case No.: 23046	SAS	No.:		SDG No.:	IDD001	

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С			inuing Blank	(ug/L)	ation 3		Preparation Blank	С	м
Aluminum	(49/11/	+	23.6					<u>c</u>	<u> </u>		P
Antimony	1	1	4.7					- 			P
Arsenic	-	+	4.8					i	<u> </u>		P
Barium		+++	5.9			++-		<u> </u>	<u> </u>		l P
Beryllium	1	+	0.2					<u>i</u>			l P
Cadmium	i	- 	0.6			- 		<u>i</u>			P
Calcium	1	+ +	182.1		<u> </u>	- - 		i			P
Chromium		- 	8.3					i			P
Cobalt		 	2.0			1 1		i			P
Copper		Ti	2.4			1 1		Ī			P
Iron	İ		49.9								P
Lead		Ti	1.3			1 1					P
Magnesium	İ		178.3								P
Manganese			4.7			İ					P
Nickel			13.0	В		İ					P
Potassium			393.0	υ							P
Silver			2.2	U		İ					P
Sodium			472.7			Ĭ L					P
Thallium			5.7	U							P
Vanadium		1	2.0	U							P
Zinc			1.0	<u>ט</u>							P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDD001

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank			Con	tinuing Blank	Calibr	ation		Preparation Blank		
Analyte	(ug/L)	c	1	С	2	С	3	С	Diank	C.	М
Manganese	0.	7 U	0	. 기 [기	0	. 7 ט	0.7	ט			P
Zinc	1.	ן ט ס	1	. 0 U	1	. O U	1.0	U			P

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank				tinuing Blank	Calibr (ug/L)	ation		Preparation	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Manganese			0	. 기 기						P
Zinc			1	. 0 U						P

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				inuing Blank	Calibra (ug/L)	ation		Preparation Blank		
Analyte	(ug/L)	c	1	С	2	С	3	С		С	M
Selenium	2.	1 B	2.	9 B	1	. 7 ט	2.	7 B			P

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank				tinuing Blank	Calibr (ug/L)	ation		Preparation Blank		
Analyte	(ug/L)	С	1	C	2	С	3	С		С	M
Selenium			4.	7 B							P

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

:	Initial Calib. Blank			C	ontinuing Ca Blank (ug				Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Aluminum	23.6	บ	23.6	U	23.6	U	23.6	U			P
Antimony	4.7	U	4.7	U	4.7	Ū	4.7	U			P
Arsenic	4.8	Ü	4.8	U	4.8	Ū	4.8	Ū			P
Barium	5.9	U	5.9	ַ	5.9	ַ	5.9	Ū			P
Beryllium	0.2	В	0.2	ַ	0.2	В	0.3	В			P
Cadmium	0.6	U	0.6	Ū	0.6	U	0.6	U			P
Chromium	1.4	U	1.4	Ū	1.4	U	1.4	U			P
Cobalt	2.0	υ	2.0	Ū	2.0	U	2.0	U			P
Copper	2.4	บ	2.4	U	2.4	U	2.4	ט			P
Iron	33.3	U	33.3	U	33.3	ַ	33.3	Ū			P
Lead	1.3	υ	1.3	Ū	1.3	ַ	1.3	U			P
Manganese	0.7	U	0.7	υ	0.7	U	0.7	U			P
Nickel	2.1	บ	2.1	U	2.1	U	2.1	Ū			P
Silver	2.2	U	2.2	ָט	2.2	υ	2.2	บ			P
Thallium	5.7	Ū	5.7	U	5.7	U	5.7	U			P
Vanadium	2.0	U	2.0	Ū	2.0	U	2.0	U	·		P

3

BLANKS

_____ Contract: 23046 Lab Name: STL BURLINGTON

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	Cont 1 C	cinuing (Blank (1		ation 3	С	Preparation Blank	С	м
Aluminum	1		23.6 ^U		- -		<u></u>			P
Antimony		 	4.7 U				<u> </u>	<u> </u>		P
Arsenic		1	4.8 U		 		i			P
Barium		11	5.9 0		 		i			P
Beryllium		11	0.4 B		 					P
Cadmium			0.6 U							P
Chromium		1 i	1.4 0		i i					P
Cobalt			2.0 0		i i					P
Copper			2.4 0		i i					P
Iron			33.3 0		ĪĪ					P
Lead		[-]	1.3 0							P
Manganese			0.7 0							P
Nickel			2.1 [7]		ĪĪ					P
Silver			2.2 0							P
Thallium			5.7 ^ប		Ī L.					P
Vanadium	1		2.0 0					•		P

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures
Concentration Units: ug/L

			CTACTON ON	ics. ug	<u>, </u>			
	Tr	ie	Init	ial Found		Fi	nal Found	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.A	B &R	Sol.A	Sol.AE	8 8R
Aluminum	500000	482740	493100	489700.0	101.4	494900	492500.0	102.0
Antimony	0	596	-1	618.5	103.8	-1	620.6	104.1
Arsenic	0	102	11	103.7	101.7	5	103.6	101.6
Barium	0	503	2	497.3	98.9	2	500.0	99.4
Beryllium	0	482	0	479.2	99.4	0	481.9	100.0
Cadmium	0	938	0	924.4	98.6	0	925.3	98.6
Calcium	500000	477840	488100	487400.0	102.0	489800	487500.0	102.0
Chromium	0	483	2	475.5	98.4	2	475.5	98.4
Cobalt	0	457	-1	455.3	99.6	-1	454.4	99.4
Copper	0	526	4	512.8	97.5	4	517.2	98.3
Iron	200000	191980	199900	197000.0	102.6	200600	197400.0	102.8
Lead	0	49	10	53.9	110.0	10	54.8	111.8
Magnesium	500000	521880	536600	536300.0	102.8	537900	537100.0	102.9
Manganese	0	474	1	467.9	98.7	1	468.8	98.9
Nickel	0	952	1	941.0	98.8	1	941.6	98.9
Potassium	0	0	32	34.4		-17	-13.0	
Silver	0	213	1	213.6	100.3	1	215.9	101.4
Sodium	0	0	-58	-61.3		-408	-150.8	
Thallium	0	89	-8	83.9	94.3	-5	88.4	99.3
Vanadium	0	478	3	467.4	97.8	2	468.2	97.9
Zinc	0	998	4	1001.0	100.3	5	1004.0	100.6

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

ICP ID Number: TJA ICAP 4

ICS Source: Inorganic Ventures

	True		Initia	al Found		Fir	al Found	•
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R
Manganese	0	451	1	476.8	105.7	2	476.3	105.6
Zinc	0	951	6	994.3	104.6	6	988.4	103.9

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046 Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDD001</u> ICP ID Number: TJA ICAP 6 ICS Source: Inorganic Ventures

Concentration Units: ug/L

	Tru	е	Initi	ial Found		Fin	al Found	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AE	%R
Selenium	0	48	2	55.0	114.6	6	52.2	108.8

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures

	True	9	Init	Initial Found		Fi	nal Found	'ound	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.A	B %R	Sol.A	Sol.AE	%R	
Aluminum	500000	477680	506600	506300.0	106.0	505400	507800.0	106.3	
Antimony	0	575	-1	593.8	103.3	1	587.8	102.2	
Arsenic	0	97	10	104.0	107.2	8	100.9	104.0	
Barium	0	464	2	495.9	106.9	2	492.6	106.2	
Beryllium	0	444	0	471.4	106.2	0	469.6	105.8	
Cadmium	0	874	0	931.6	106.6	0	930.1	106.4	
Chromium	0	451	4	478.0	106.0	3	473.3	104.9	
Cobalt	0	434	-1	455.2	104.9	-1	444.0	102.3	
Copper	0	482	4	513.4	106.5	3	511.5	106.1	
Iron	200000	192500	200500	200600.0	104.2	196700	197900.0	102.8	
Lead	0	41	-1	40.5	98.8	0	40.2	98.0	
Manganese	0	451	1	479.4	106.3	2	478.7	106.1	
Nickel	0	876	1	926.1	105.7	0	909.3	103.8	
Silver	0	198	0	211.7	106.9	0	214.3	108.2	
Thallium	0	83	-3	85.3	102.8	-3	85.7	103.3	
Vanadium	0	464	0	493.3	106.3	0	488.7	105.3	

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Lab	Name:	STL	BURLINGTON	Contract:	23046

Matrix (soil/water): SOIL

Level (low/med): LOW

% Solids for Sample: 39.3

Analyte	Control	Spiked Sample		Sample		Spike	_		
MIGTACE	Limit %R	Result (SSR)	С	Result (SR)		Added (SA)	%R	Q	М
Aluminum		29087.4609		25395.4004		498.93	740.0		P
Antimony	75 - 125	52.8115		7.4914	В	124.73	36.3	И	P
Arsenic	1	138.1031		118.2957		9.98	198.5		₽
Barium	75 - 125	1134.0620		617.9215		498.93	103.4		P
Beryllium	75 - 125	12.9746		1.2982		12.47	93.6		P
Cadmium	75 - 125	28.5636		11.9468		12.47	133.3	И	P
Chromium	75 - 125	58.3994		11.2134		49.89	94.6		P
Cobalt	75 - 125	131.2428		15.0726		124.73	93.1		P
Copper	75 - 125	152.4472		84.7927		62.37	108.5	l	₽
Iron		45003.2500		46275.5117		249.46	-510.0		P
Lead		578.0073		486.4542	l	4.99	1834.7		P
Manganese		567.7793		577.0095		124.73	-7.4		P
Mercury	1	5.9240		4.1252		0.40	449.7		CV
Nickel	75 - 125	143.0425		26.4681		124.73	93.5		P
Selenium	75 - 125	4.4180		2.5096		2.49	76.6		P
Silver	75 - 125	12.8898		1.2877	В	12.47	93.0		P
Thallium	75 - 125	11.4254		1.4219	ט	12.47	91.6	L	P
Vanadium	75 - 125	156.5883		39.5649		124.73	93.8		P
Zinc	1	2260.1411		2050.0920		124.73	168.4		P

Comments:			

5B

POST DIGEST SPIKE SAMPLE RECOVERY SAMPLE NO.

IDOLPI	SSD14A	

Lab Name:	STL BURLING	GTON	Contra	ct: <u>23046</u>			
Lab Code:	STLVT	Case No.: 23046	SAS		SDG No	o.:	IDD001
Matrix (so	oil/water):	SOIL		Level (low/	med): <u>I</u>	LOW	

				Ton onico. ug/ i			· · · · · · · · · · · · · · · · · · ·		
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added(SA)	%R	Q	м
Aluminum		117000.00		101800.00		2000.0	760.0		P
Antimony		501.90		30.03	В	500.0	94.4		P
Arsenic		523.70		474.20		40.0	123.8		P
Barium		4452.00		2477.00		2000.0	98.8		P
Beryllium		53.31		5.20		50.0	96.2		P
Cadmium		96.60		47.89		50.0	97.4		P
Chromium		241.10		44.95		200.0	98.1		P
Cobalt		522.40		60.42		500.0	92.4		P
Copper		611.50		339.90		250.0	108.6		P
Iron		194100.00		185500.00		1000.0	860.0		P
Lead		2010.00		1950.00		20.0	300.0		P
Manganese		2881.00		2313.00		500.0	113.6		P
Nickel		579.50		106.10		500.0	94.7		P
Selenium		18.18		10.06		10.0	81.2		P
Silver		53.42		5.16	В	50.0	96.5		P
Thallium		47.86		5.70	U	50.0	95.7		P
Vanadium		649.00		158.60		500.0	98.1		P
Zinc		13980.00		8218.00		5000.0	115.2		P

Comments:			
•			

6

DUPLICATES

•	n	3.4	-	т	177	1	LΤ	$\overline{}$		
	А	M	\mathbf{r}	ъ.	и.		N		,	

IDOLPDSSD14D	
--------------	--

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): SOIL Level (low/med): LOW

% Solids for Duplicate: 44.6

	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum		25395.4004		22454.2207		12.3		P
Antimony		7.4914	В	7.1222	В	5.1		P
Arsenic		118.2957		131.2179		10.4		P
Barium		617.9215		615.1774		0.4		P
Beryllium		1.2982		1.1735	В	10.1		P
Cadmium		11.9468		15.0152		22.8	*	P
Calcium		10664.5703		10844.1797		1.7		P
Chromium	2.5	11.2134		10.0409		11.0		P
Cobalt	12.5	15.0726		15.4767		2.6		P
Copper		84.7927		86.5639		2.1		P
Iron		46275.5117		43356.7813		6.5		P
Lead		486.4542		583.9944		18.2		P
Magnesium	1247.3	2993.5640		2691.7129		10.6		P
Manganese		577.0095		523.3748		9.7		P
Mercury		4.1252		4.4024		6.5		CV
Nickel	10.0	26.4681		24.3826		8.2		P
Potassium	1247.3	3529.9109		3255.5010		8.1		P
Selenium	1.2	2.5096		2.0254		21.4		P
Silver		1.2877	В	1.2448	в	3.4		P
Sodium		350.7459	В	373.4471	В	6.3		P
Thallium		1.4219	ט	1.4219	U			P
Vanadium	12.5	39.5649		35.6733		10.3		P
Zinc		2050.0920		2213.9900		7.7		P

7 LABORATORY CONTROL SAMPLE

Lab Name	: STL BURLINGTON	Contract: 23046	

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

			i				•	
	. Aqueous	s (ug/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found C	Limi	ts	%R
Aluminum	1			200.0	198.4	160.0	240.0	99.2
Antimony				50.0	51.6	40.0	60.0	103.2
Arsenic				24.0	. 23.7	19.2	28.8	98.8
Barium				200.0	199.7	160.0	240.0	99.8
Beryllium				5.0	5.1	4.0	6.0	102.0
Cadmium				25.0	25.0	20.0	30.0	100.0
Calcium	T I			2000.0	2092.0	1600.0	2400.0	104.6
Chromium				20.0	20.5	16.0	24.0	102.5
Cobalt				50.0	49.4	40.0	60.0	98.8
Copper	1			25.0	26.2	20.0	30.0	104.8
Iron				100.0	108.3	80.0	120.0	108.3
Lead				22.0	21.7	17.6	26.4	98.6
Magnesium				2000.0	2016.0	1600.0	2400.0	100.8
Manganese	1			50.0	50.8	40.0	60.0	101.6
Mercury				0.1	0.1	0.1	0.1	100.0
Nickel	1			50.0	49.4	40.0	60.0	98.8
Potassium				2000.0	2028.0	1600.0	2400.0	101.4
Selenium	1			21.0	20.5	16.8	25.2	97.6
Silver				25.0	22.8	20.0	30.0	91.2
Sodium				2000.0	2054.0	1600.0	2400.0	102.7
Thallium	1			25.0	24.0	20.0	30.0	96.0
Vanadium				50.0	51.1	40.0	60.0	102.2
Zinc				50.0	50.5	40.0	60.0	101.0

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLPDSSD14L

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Matrix (soil/water): SOIL Level (low/med): LOW

			ii onics. ug/ ii				
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	M
Aluminum	101800.00		115400.00		13.4	E	P
Antimony	30.03	В	31.88	В	6.2		P
Arsenic	474.20		536.60	ŀ	13.2	E	P
Barium	2477.00	<u> </u>	2737.00		10.5	E	P
Beryllium	5.20		6.46	В	24.2		P
Cadmium	47.89	<u> </u>	54.36		13.5	E	P
Calcium	42750.00	İ	47830.00		11.9	E	P
Chromium	44.95	l	43.79	В	2.6		P
Cobalt	60.42		66.12	В	9.4		P
Copper	339.90	İ	372.70		9.6		P
Iron	185500.00	Ī	207900.00		12.1	E	P
Lead	1950.00	Ì	2232.00		14.5	E	P
Magnesium	12000.00	<u> </u>	13570.00	В	13.1	E	P
Manganese	2313.00	Ī	2582.00		11.6	E	P
Nickel	106.10	<u> </u>	117.50	В	10.7	E	P
Potassium	14150.00		17340.00	В	22.5		P
Selenium	10.06	Ì.	8.50	Ū	100.0		P
Silver	5.16	В	11.00	Ū	100.0	ĺ	₽
Sodium	1406.00	В	2363.50	ט	100.0		P
Thallium	5.70	Ū	28.50	ט			₽
Vanadium	158.60	Ī	174.60	В	10.1	E	P
Zinc	8218.00		9052.00		10.1	E	P

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTO	Contract: 23046						
Lab Code: STLVT C	ase No.: 230	046	SAS No.:		_ SDG	No.	:_IDD001
ICP ID Number:			Date:	7/1/2003			
Flame AA ID Number: <u>Le</u>	eman Hydra	AA					
Furnace AA ID Number: _							
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
	Mercury	253.70		0.2	0.10	CV	

Comments:

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDD001
ICP ID Number: TJA ICAP 4	Date: <u>7/1/2003</u>
Flame AA ID Number:	
Furnace AA ID Number:	

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Aluminum	308.215		200	23.6	P
Antimony	206.838		60	4.7	P
Arsenic	189.042		10	4.8	P
Barium	493.409		200	5.9	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.6	P
Calcium	317.933		5000	182.1	P
Chromium	267.716		10	1.4	P
Cobalt	228.616		50	2.0	P
Copper	324.754		25	2.4	P
Iron	271.441		100	33.3	P
Lead	220.353		3	1.3	P
Magnesium	279.078		5000	178.3	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.1	P
Potassium	766.491		5000	393.0	P
Silver	328.068		10	2.2	P
Sodium	330.232		5000	472.7	P
Thallium	190.864		10	5.7	P
Vanadium	292.402		50	2.0	P
Zinc	213.856		20	1.0	P

Comments:	

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTO	Contrac	t: <u>23046</u>					
Lab Code: STLVT C	ase No.: 230	046	SAS No.		SDG	No.	: IDD001
ICP ID Number: TJA ICAP	6		Date:	7/1/2003			
Flame AA ID Number:							
Furnace AA ID Number: _							
•	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
	Selenium	196.026		5	1.7	P	

Comments:

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046

ICP ID Number: TJA ICAP 4 Date: 6/30/2003

	Wave-	T				
Analyte	length	•	ntererement	Correction 1	eactors for:	
Analyce	(nm)	Al	Ca	Fe	Mg	Ba
Aluminum	308.22	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.000000	-0.0000600	0.0000000	0.0000000
Barium	493.41	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.000000	0.0008950	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000330	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	0.0004320
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.0006300	0.0000000	0.0000090	0.0000000	0.0000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000200	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	-0.0000220	0.0000000	0.0000000
Silicon	288.16	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0000200	0.000000	-0.0000900	0.0000000	0.0000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.0000000	0.0000490	0.0000000	0.0000000
Zinc .	213.86	0.0000250	0.000000	0.0000630	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURL	INGTON	Contract: 23046	23046		
Lab	Code: STLVT	Case No.: 23046	SAS No.:	SDG No.: IDD001		

ICP ID Number: TJA ICAP 4 Date: 6/30/2003

	Wave- length					
Analyte	(nm)	Со	Cr	Cu	Mn	Мо
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0072400
Antimony	206.84	0.0000000	0.0111600	0.0000000	0.0000000	-0.0024800
Arsenic	189.04	0.0000000	0.0004700	0.0000000	0.0000000	0.0013380
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0001150	0.0000000	0.0000000	0.0000000	0.0001350
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	-0.0016380
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.1059800	0.0000000	0.0000000	0.0000000	0.0036200
Lead	220.35	-0.0022600	-0.0001190	0.0000000	0.0000000	-0.0007540
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	-0.0004300	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silicon	288.16	0.0000000	-0.0038600	0.0000000	0.0000000	-0.0042750
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	-0.0007920
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0032700	0.0002540	0.0000000	-0.008140	0.0000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	-0.0160000
Zinc	213.86	0.0000000	0.000000	0.0003300	0.0000000	0.0000000

Comments:						
	 	 	 	 	 · · · · · · · · · · · · · · · · · · ·	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab N	Name: STL BURLINGTON			Contract:	23046		
Lab (Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.: IDD001

ICP ID Number: TJA ICAP 4 Date: 6/30/2003

	Wave-	Interelement Correction Factors for:						
Analyte	length							
	(nm)	Ni	Sb	Sn	V	Zn		
Aluminum	308.22	0.0000000	0.000000	0.1440400	0.0000000	0.0000000		
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.000000		
Arsenic	189.04	0.0000000	0.000000	0.0000000	0.0000000	0.000000		
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.000000		
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0006280	0.000000		
Boron	249.68	0.0000000	0.000000	0.0000000	0.0000000	0.000000		
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.000000		
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000		
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.000000		
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	0.0000000		
Copper	324.75	0.0000000	0.000000	0.0000000	-0.000192	0.0000000		
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0237000	0.0000000		
Lead	220.35	0.0001240	-0.0002280	0.0000000	0.0005020	0.0000000		
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Selenium	196.03	0.0000000	0.0001660	0.0000000	0.0000000	0.0000000		
Silicon	288.16	0.0000000	0.0000000	-0.1212200	0.0000000	0.0000000		
Silver	328.07	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.1177000		
Thallium	190.86	0.0000000	0.0000000	0.0000000	0.0025400	0.0000000		
Tin	189.99	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000		
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	0.0000000		
Zinc	213.86	0.0052400	0.000000	0.0000000	0.0000000	0.0000000		

Comments:			*		
	·	 			

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046

ICP ID Number: TJA ICAP 6 Date: 10/1/2002

	Wave-	<u> </u>			—				
	length	Interelement Correction Factors for:							
Analyte	(nm)	Al	Ca	Fe	Mg	Ag			
Aluminum	308.215	0.0000000	0.000000	-0.0002180	0.0000000	0.000000			
Antimony	206.838	0.0000080	0.000000	0.0000000	0.0000000	0.000000			
Arsenic	189.042	0.0000170	0.000000	-0.0000590	0.0000000	0.000000			
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Boron	249.678	0.0000000	0.000000	-0.0000740	0.0000000	0.000000			
Cadmium	226.502	0.0000010	0.0000000	0.0000590	0.0000000	0.000000			
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Chromium	267.716	0.0000100	0.000000	-0.0000200	0.0000060	0.000000			
Cobalt	228.616	0.0000000	0.000000	-0.0000400	0.0000000	0.000000			
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Iron	271.441	0.0001740	0.000000	0.0000000	-0.001587	0.000000			
Lead	220.353	-0.0000300	0.000000	0.0000550	-0.000006	0.000000			
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Manganese	257.610	0.0000000	0.000000	0.0000000	0.0000200	0.000000			
Molybdenum	202.030	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Nickel	231.604	0.0000000	0.000000	-0.0000520	0.0000000	0.000000			
Phosphorus	178.287	0.0000070	0.000000	0.0000000	0.0000000	0.000000			
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Selenium	196.026	0.0000000	0.000000	-0.0007500	0.0000000	0.000000			
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000			
Sodium	330.232	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Strontium	421.552	0.0000000	0.0000240	0.0000000	0.0000000	0.000000			
Thallium	190.864	0.0000080	0.000000	-0.0001100	0.0000000	0.000000			
Tin	189.989	0.0000090	0.000000	-0.0000750	0.0000000	0.000000			
Titanium	334.941	0.0000000	0.000000	0.0000000	0.0000140	0.000000			
Vanadium	292.402	0.0000000	0.000000	0.0000030	0.0000040	0.000000			
Zinc	206.200	0.0000300	0.0000000	-0.0000600	0.0000000	0.000000			

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name:	STL BURLINGTON	Contract:	23046

ICP ID Number: <u>TJA ICAP 6</u> Date: <u>10/1/2002</u>

	Wave-	I	·	Composition 1					
Analyte	length	Interelement Correction Factors for:							
Anaryce	(vw)	As	В	Be	Cd	Со			
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Antimony	206.838	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Arsenic	189.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Calcium	317.933	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Chromium	267.716	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Cobalt	228.616	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	-0.0082960			
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Molybdenum	202.030	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Selenium	196.026	0.0000000	0.000000	0.0000000	0.0000000	-0.0001900			
Silver	328.068	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000			
Thallium	190.864	0.0000000	0.000000	0.0000000	0.0000000	0.0002350			
Tin	189.989	0.0000000	0.000000	-0.0004370	0.0000000	0.0000000			
Titanium	334.941	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			
Vanadium	292.402	0.0000000	0.000000	0.0000000	0.0000000	0.000000			
Zinc	206.200	0.0000000	0.000000	0.0000000	0.0000000	0.0000000			

Comments:		
	;	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	b Name: STL BURLINGTON			Contract:	23046					
Lab	Code: STL	VT	Case No.	. : ,	23046	SAS No.:		SDG No.: 1	DD001	

ICP ID Number: <u>TJA ICAP 6</u> Date: <u>10/1/2002</u>

-	Wave-		Interelement	Correction b	actors for:	
Analyte	length (nm)	Cr	Cu	Mn	Na	Ni
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.838	0.0078510	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	-0.0002840	0.000000	0.0000000	0.0000000	0.0000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.502	0.0000000	0.000000	0.0000000	0.0000000	-0.0001750
Calcium	317.933	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0008900	0.000000	0.0000000	0.0000000	0.0000000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.0000800
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Phosphorus	178.287	-0.0007400	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.026	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Thallium	190.864	0.0000000	0.000000	-0.0004500	0.0000000	0.000000
Tin	189.989	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Titanium	334.941	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Zinc	206.200	0.0044570	0.0000000	0.0000000	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLINGTON		Contract: 23046	
Lab	Code: STLVT	Case No.: 23046	SAS No.:	SDG No.: IDD001

ICP ID Number: TJA ICAP 6 Date: 10/1/2002

	Wave-		interelement	Correction H	Factors for:	
Analyte	length	1	.ncererement	Correction	actors for.	
Miaryce	(nm)	Pb	Sb	Se	Si	Tl
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.409	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.502	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Calcium	317.933	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Phosphorus	178.287	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.026	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silver	328.068	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.232	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.864	-0.0003500	0.000000	0.0000000	0.0000000	0.0000000
Tin	189.989	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Titanium	334.941	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Zinc	206.200	0.0003900	0.0000000	0.0000000	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLINGTON	Contract: 23046
Lab	Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDD001
ICP	ID Number: TJA ICAP 6	Date: <u>10/1/2002</u>

	Wave- length		Interelement	Correction	Factors	for:
Analyte	(nm)	v	Zn			
Aluminum	308.215	0.0173200	0.0000000			
Antimony	206.838	-0.0012700	0.0000000			
Arsenic	189.042	-0.0002800	0.000000			
Barium	493.409	0.0000000	0.0000000			
Beryllium	313.042	0.0004800	0.0000000			
Boron	249.678	0.0000000	0.0000000			
Cadmium	226.502	0.0000000	0.0000000			
Calcium	317.933	0.0000000	0.000000			
Chromium	267.716	-0.0003600	0.0000000			
Cobalt	228.616	0.0000000	0.000000		1	
Copper	324.754	0.0000000	0.0000000			
Iron	271.441	0.0081200	0.000000			
Lead	220.353	-0.0000850	0.0000000			
Magnesium	279.079	0.0000000	0.0000000			
Manganese	257.610	0.0000000	0.000000			
Molybdenum	202.030	0.0000000	0.0000000			
Nickel	231.604	0.0000000	0.0000000			
Phosphorus	178.287	0.0000000	0.0164830			ļ
Potassium	766.491	0.0000000	0.000000			
Selenium	196.026	0.0000000	0.0000000			
Silver	328.068	-0.0003350	0.0000000	:]
Sodium	330.232	-0.1479730	0.6581000			
Strontium	421.552	0.0000000	0.000000			
Thallium	190.864	0.0014900	0.000000			l
Tin	189.989	0.0000000	0.000000			
Titanium	334.941	0.0000000	0.000000			
Vanadium	292.402	0.0000000	0.0000000			
Zinc	206.200	-0.0004730	0.000000			I

Comments:	

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	STL	BURLINGTON	Contract:	23046

ICP ID Number: TJA ICAP 4 Date: 7/1/2003

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	10000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	10000.0	P
Magnesium	10.00	500000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	10000.0	P
Potassium	10.00	100000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	5000.0	P

Comments:		
	·	

12 ICP LINEAR RANGES (QUARTERLY)

Lab Name: STL BURLINGTO	N		Contract: 23046		
Lab Code: <u>STLVT</u>	Case No.: 23	3046	SAS No.:	SDG No.:	IDD001
ICP ID Number: TJA ICA	P 6		Date: <u>7/1/2003</u>		
	Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м	
	Selenium	10.00	5000.0	P	

Comments:

13

PREPARATION LOG

Lab	Name:	STL BURL	INGTON	Contract: 2304	16	
				•		_
T.ah	Code	CTT 37TP	Case No + 23046	SAS No .	SDG No · IDD001	

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
IDOLADPSD12	8/13/2003	0.60	100.0
IDOLPDPSD13	8/13/2003	0.62	100.0
IDOLPDSSD14	8/13/2003	0.66	100.0
IDOLPDSSD14100	8/13/2003	0.66	100.0
IDOLPDSSD14D	8/13/2003	0.63	100.0
IDOLPDSSD14S	8/13/2003	0.64	100.0
IDOLSTPSD07	8/13/2003	0.62	100.0
IDOLSTSSD05	8/13/2003	0.69	100.0
IDOLSTSSD06	8/13/2003	0.63	100.0
LCSS0813B	8/13/2003	1.00	100.0
PBS0813B	8/13/2003	0.60	100.0

13

PREPARATION LOG

Lab	Name:	STL BURLINGT	ON	Contract:	23046		
Lab	Code:	STLVT	Case No.: 23046	SAS No.:		SDG No.:	IDD001

Method: P

EPA Sample No.	Preparation Date	Initial Weight (g)	Volume (mL)
IDOLADPSD12	8/20/2003	1.06	100.0
IDOLPDPSD13	8/20/2003	1.02	100.0
IDOLPDSSD14	8/20/2003	1.02	100.0
IDOLPDSSD14100	8/20/2003	1.02	100.0
IDOLPDSSD14D	8/20/2003	1.02	100.0
IDOLPDSSD14S	8/20/2003	1.02	100.0
IDOLSTPSD07	8/20/2003	1.03	100.0
IDOLSTSSD05	8/20/2003	1.00	100.0
IDOLSTSSD06	8/20/2003	1.03	100.0
LCSS0820D	8/20/2003	1.00	100.0
PBS0820D	8/20/2003	1.00	100.0

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 9/12/2003 End Date: 9/12/2003

EPA													A	na	lу	tes	3						-				
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	к	s	Α	N	т	v	Z	С
No.				L	В	s	A	E	D	A	R	0	U	E	в	G	И	G	I		E	G	A	L		И	N
S0 ··	1.00	1523		Х	х	х	Х	Х	х	П	Х	х	х	х	Х		Х	T	х	j		х		Х	х		_
S	1.00	1528		х										х													_
S	1.00	1531			х	х									х									X			
S	1.00	1535					х	Х	Х		Х	Х	х				x		Х			X			х		
LRS	1.00	1540		х	х	Х	х	Х	Х		Х	х	x	х	x		x		х			X		X	х		
LRS	1.00	1545		х	х	Х	х	Х	x		Х	х	x	х	x		x		х			X		X	х		
LRS	1.00	1550		х	х	х	х	х	X		Х	х	Х	х	х		x		x			X		Х	х		
ICV	1.00	1555		х	х	х	х	Х	х		х	х	х	х	x		x		Х			X		X	х		
ICB	1.00	1559		х	х	х	x	х	х		Х	х	х	х	х		x		Х			Х		Х	х		
ICSA	1.00	1604		х	х	х	Х	х	х		х		х		х		х		х	i		х		Х	х		_
ICSAB	1.00	1609		Х	х	х	х	Х	х		Х		х	х	Х		Х		х			Х		Х	х		_
CRI	1.00	1614		Х	х	х	х	х	х		Х	x	х	х	Х		Х		х			Х		Х	х		
ccv	1.00	1618		x	х	х	х	х	х	П	х	х	х	х	х		x		х			X		Х	x		
CCB	1.00	1623		х	х	х	х	х	х		х	х	х	х	х		x		х			X		X	x		_
ZZZZZZ	1.00	1628								Ī																	
ZZZZZZ	1.00	1633							Π	Ī																	_
ZZZZZZ	1.00	1637		Π						Π																	_
ZZZZZZ	1.00	1642																									
ZZZZZZ	5.00	1647																									
ZZZZZZ	1.00	1651																									
ZZZZZZ	1.00	1656		Π						Î																\Box	
ZZZZZZ	1.00	1700		Π																							
ZZZZZZ	1.00	1705																									
ZZZZZZ	1.00	1710																									
ccv	1.00	1714		x	х	х	х	х	х		х	х	х	х	х		X		x			X		Х	X		
CCB	1.00	1719		х	х	х	x	х	x		x	х	х	х	х		x		x			Х		X	x		
ZZZZZZ	1.00	1724																									
ZZZZZZ	1.00	1729																									
ZZZZZZ	1.00	1733					1																				_
ZZZZZZ	1.00	1738																									
ZZZZZZ	5.00	1743		Π			1			İ																\prod	
IDOLPDSSD14A	1.00	1747		х	х	х	х	х	х	Ī	Х	х	х	х	х		х	Ī	Х			х		Х	х		
ZZZZZZ	1.00	1752																									
ZZZZZZ	1.00	1757								Ī			П														
ZZZZZZ	10.00	1801																									
ZZZZZZ	50.00	1806		Ī						Ī									İ			Γ					
ccv	1.00	1811		х	х	х	х	х	х	Ī	х	х	х	х	х		х		х			х		х	х		
ССВ	1.00	1816		x	х	х	x	х	х	i		х	_				х		х			х		х			

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 9/12/2003 End Date: 9/12/2003

EPA													2	Ana	ıly	te	s										
Sample No.	D/F	Time	% R	A L	S B	A S	B A	1	C D	C A	-	ı		F E	P B	M G		H G	N	К	S E	A G	N A	T L	V	Z N	
ZZZZZZ	10.00	1820																								П	
ZZZZZZ	10.00	1825									ĺ																
ZZZZZZ	10.00	1830										Γ	1													П	_
ZZZZZZ	1.00	1834									Ī		Ī													П	_
ZZZZZZ	10.00	1839								Ī	ĺ		Ì													П	_
ICSA	1.00	1844		х	х	х	х	х	х	ľ	x	х	x	х	х		х		Х			х		Х	х	П	_
ICSAB	1.00	1848		х	х	х	х	х	х		x			_	х		х		Х			х			х	П	_
CRI	1.00	1853		х	х	х	х	х	х	<u> </u>	x				х		Х		х			х		Х	х	П	
CCV	1.00	1858		х	х	х	х	х	х		х		4	•	х		х		х			х	H	Х	х	П	
CCB	1.00	1903		х	х	х	х	х	х			_			х		х		х			х	П	Х	х	П	_

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 9/12/2003 End Date: 9/13/2003

Start Date. <u>9/12/20</u>																											
EPA													P	۱na	lу	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	C	С	С				P	М	М	Н	N	K	s	A	И	T	V	Z	С
No.				L	В	s	A	E	D	A	R	0	บ	E	В	G	N	G	I		E	G	A	L		И	И
S0	1.00	2145															Х									Х	
S	1.00	2149																								\Box	
S	1.00	2153																									_
S	1.00	2157															х									х	
LRS	1.00	2202															х									Х	
LRS	1.00	2207						Ì		Ī							х					l				x	
LRS	1.00	2212						Ī	Γ						·		х									х	
ICV	1.00	2216											Ī				х								П	x	_
ICB	1.00	2221							Π						Π		х								П	x	_
ICSA	1.00	2226														Π	х								П	X	_
ICSAB	1.00	2231								ĺ						ĺ	х									х	
CRI	1.00	2235	,		İ				Ī	Ī						Π	х								П	х	
CCV	1.00	2240														Π	х								П	x	_
ССВ	1.00	2245													Ì	Π	х								П	x	
ZZZZZZ	1.00	2250	,				İ			Ī															П		_ i
ZZZZZZ	1.00	2254			İ							Π													П		_ i
ZZZZZZ	1.00	2259		i	İ					Ī						Ī	İ					Π			П		_ i
ZZZZZZ	1.00	2304			i					Ī							Ī					Γ					_ i
ZZZZZZ	5.00	2308								i													П		П		_ i
ZZZZZZ	1.00	2313			İ				Ì	ī						Ī						Î	П		П		_ i
ZZZZZZ	1.00	2318			i				<u> </u>	Π											Π				П		T i
ZZZZZZ	1.00	2322								Ī											Ī	Ì			П		i
ZZZZZZ	1.00	2327			İ						Г				Γ										П		_ i
ZZZZZZ	1.00	2332								Ī		Ī				Π					Γ	Ī			П	П	_
CCV	1.00	2336								İ		Г				ĺ	х					Γ			П	х	
ССВ	1.00	2341			İ							Г		Ī		Ī	х					Ī			П	х	i
ZZZZZZ	1.00	2346														Π						İ			П	П	_ i
ZZZZZZ	1.00	2351																				İ			П	T	_
IDOLSTSSD05	10.00	2355				i																			П	х	-i
ZZZZZZ	1.00	0000												İ											П	ī	_ j
ZZZZZZ	5.00	0005								Ī	İ	İ		İ						Г		Π			П	T	_
ZZZZZZ	1.00	0009						İ	İ	İ		İ	<u> </u>	İ	İ							Ī			П	Π	_ i
ZZZZZZ	1.00	0014								Ī			İ	Ī								ĺΤ			П		_ i
ZZZZZZ	1.00	0019		İ	İ		 		Ī	İ	ĺ	Ī	Ī	Γ	Ī	Π					Ī	Π			П		_
IDOLPDSSD14	10.00	0023			<u> </u>		Ì		-	Ī		Π	Ì			Π					<u> </u>				П	х	_ i
IDOLPDSSD14L	50.00					 		İ		Ī		İ	İ			Ī				Ī	Ī	Ī		Ī	П	х	_ i
CCA	1.00	0033					İ		Π	İ		T	İ	Π	Γ	Γ	х					Π		Π	П	х	-i
ССВ	1.00	0038			İ	1			Г	Π	İ	Π		i –	Γ	İ	х				j	Π		Π	口	x	-i

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 9/12/2003 End Date: 9/13/2003

EPA													A	lna	ly	te	s										
Sample	D/F	Time	% R	A	s	A	В	В	С	С	С	С	С	F	P	М	М	Н	N	K		A	N	T	V	Z	С
No.				L	В	S	A	E	D	A	R	0	ט	E	В	G	N	G	I		E	G	A	L		N	N
IDOLPDSSD14A	10.00	0042																								Х	
IDOLPDSSD14D	10.00	0047																								Х	
IDOLPDSSD14S	10.00	0052					Γ																			x	
IDOLPDSSD14100	10.00	0056					Π																			х	
IDOLADPSD12	10.00	0101								Π							Х										
ICSA	1.00	0106		Π													X									$ \mathbf{x} $	
ICSAB	1.00	0110		Π			Ī			Ī						Г	х				Π					х	
CRI	1.00	0115					Ī	Ī		Î							х									х	
CCV	1.00	0120					Ī			Ī							х			Π						х	
CCB	1.00	0125					Ī		İ	Ì		Ī				İ	х				Π					х	_

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDD001

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 8/14/2003 End Date: 8/14/2003

EPA													7	\na	1y	te	s										
Sample No.	D/F	Time	% R	A L	S B	A S	B A		C D	C A	C R		C U	F E		M G		H G	N	K	S	A G	N A	T L	V	Z N	C N
S0	1.00	1654		 -										<u> </u>				Х	_								
\$0.2	1.00	1656		<u> </u>		 						•						Х									
\$0.5	1.00	1658			<u> </u>	 	<u> </u>		\vdash	П								Х			 	<u> </u>				П	
S1	1.00	1700		<u> </u>		l	 		<u> </u>			Г						Х								一	
S 5	1.00	1701			<u> </u>		<u> </u>		\vdash			Г						Х								一	
\$10	1.00	1703	-		<u> </u>	 	<u> </u>		┪	П								х			i ·					П	
ICV	1.00	1705		┢	<u> </u>	_	<u> </u>	\vdash	┢	П					П			х							_	一	_
ICB	1.00	1707			 								<u> </u>		П		П	Х					П			Πİ	
CRA	1.00	1709			<u> </u>				 			\vdash	<u> </u>					Х			i					一	_
ccv	1.00	1710					<u> </u>											Х								Πİ	_
ССВ	1.00	1712											1					Х									_
ZZZZZZ	2.00	1714					<u> </u>	 													Ì					П	_
ZZZZZZ	1.00	1716					İ			i		Г				_			Γ							П	_
ZZZZZZ	5.00	1718		<u> </u>			 	 									П				<u> </u>					\Box	
ZZZZZZ	1.00	1719											 				П									口	_
PBS0813B	1.00	1721		 		i		i									П	Х								П	_
LCSS0813B	1.00	1723				 							Ī				П	X			Ī						_
IDOLSTSSD05	1.00	1725			_	<u> </u>	Ì											Х	Г							\Box	_
IDOLPDSSD14	1.00	1727				 	İ						Ì					Х	Π							\Box	_
IDOLPDSSD14D	1.00	1728					i						Ī					Х			Ī					П	_
CCV	1.00	1730		<u> </u>									İ					Х			Ī					\Box	_
ССВ	1.00	1732		T			İ			i			1					Х			<u> </u>					П	
IDOLPDSSD14S	1.00	1734					Г						Ī					Х			<u> </u>					口	
IDOLPDSSD14100	1.00	1736		i			İ	İ				Ì	Γ					Х			Ī					ΠÌ	
IDOLPDPSD13	1.00	1737					İ			<u> </u>		Γ	Ī	Γ			П	Х			İ					П	
IDOLADPSD12	1.00	1739					i			Ī			Ī					Х								П	_
IDOLSTPSD07	1.00	1741							<u> </u>	İ		Г	Ī	Π				х			Ì					П	
IDOLSTSSD06	1.00	1743		-	Ì			Ì	Ī	İ			Ī	Π			П	X								П	
ZZZZZZ	1.00	1745				Ī	Ī		Π		Ī	Γ	Ī	Ī			П		Г								
ZZZZZZ	1.00	1746		Ī	İ	İ	İ				Ī	Ì	Ī	Π	П												
ZZZZZZ	1.00	1749			<u> </u>		Ī		<u> </u>	Ī	Ī	Ì	Ī	İ						İ		Ī				\sqcap	
CCV3	1.00	1751		Ì]	Ī			Ì	i	İ	Ī	Π				х	Ī	İ	Ī					\Box	_
CCB3	1.00	1753		i	Ì		i			İ	i		Ī	Π	İ			Х	Ī	Ī	Ϊ					\sqcap	_

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 8/30/2003 End Date: 8/30/2003

start Date: <u>8/30/</u>																											
EPA													A	ma	1y	te	s										
Sample	D/F	Time	% R	A	S	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	Α	N	T	V	Z	С
No.				L	В	s	A	E	D	A	R	0	บ	E	В	G	И	G	I		E	G	A	L		N	И
S0	1.00	1728		х	Х	х	Х	Х	Х	х	Х	Х	х	х	Х	X	Х		X	X		Х	Х	Х	х	X	
S	1.00	1733		х						х				х		X				Х			х				
S	1.00	1737		П	х	х									х									Х			
S	1.00	1741					х	х	х		х	х	х				х		х			х			х	Х	
LRS	1.00	1747		х	х	х	х	X	х	Х	х	x	х	х	х	x	х		Х	Х		х	Х	Х	х	Х	
LRS	1.00	1752		х	х	х	х	Х	х	x	х	x	х	х	х	x	x		Х	Х		х	Х	Х	x	Х	
LRS	1.00	1757		х	х	х	х	Х	х	х	х				х		X		х	Х		х	Х	х	х	X	_
ICV	1.00	1802		х	х	х	х	Х	х	x	х				х		х		Х	Х		х	Х	Х	х	х	—
ICB	1.00	1808		х	х	х	х	х	х	х	х	х	х		х		х		Х	Х		х	Х	Х	х	Х	
ICSA	1.00	1813		х	х	х	х	х	х	x	X				х	x	Х		х	Х		х	x	Х	х	Х	
ICSAB	1.00	1818		х	х	х	х	х	х	х	х				Х		Х		х	Х		х	х	Х	х	Х	
CRI	1.00	1823		х	х	х	х	х	х	х	Х				Х		х		Х	Х		х	Х	Х	х	Х	_
ccv	1.00	1828		х	х	х	х	х	х	x	Х				х		х		Х	Х		х	X	Х	х	Х	
ССВ	1.00	1833		х	х	х	х	х	х	x	х				Х		х		Х	Х		х	Х	x	х	Х	
PBS0820D	1.00	1838		х	х	х	х	х	х	х	х	_			х		x		Х	Х		х	Х	Х	х	Х	_
LCSS0820D	1.00	1843		х	X	х	х	х	х	х				_	х	_	x		х	Х		х	Х	х	х	х	
ZZZZZZ	1.00	1848																							П		
ZZZZZZ	1.00	1853																							П		
ZZZZZZ	5.00	1858					1			İ															П		
ZZZZZZ	1.00	1903								İ															П		Γ
ZZZZZZ	1.00	1909					l																		П		Γ
ZZZZZZ	1.00	1914								İ												Ī			П		Γ
ZZZZZZ	1.00	1919					Ī			İ																	
ZZZZZZ	1.00	1924																				Ī			П		
ccv	1.00	1929		х	х	х	х	х	x	x	х	х	х	х	х	X	х		х	Х		х	х	Х	x	х	
CCB	1.00	1934		х	Х	х	X	х	x	х	х	х	х	х	х	x	х		х	Х		х	х	Х	x	х	
ZZZZZZ	1.00	1939								Π	Ī																
ZZZZZZ	1.00	1944							Ī	Ī	Ī																
IDOLSTSSD05	1.00	1949		х	Х	х	х	х	x	x	x	х	х	х	х	X	х		х	Х		х	х	x	х		
IDOLPDSSD14		1954			х														х	Х		х	х	х	х		
IDOLPDSSD14L	5.00	1959		х	x	х	х	х	Х	x	X	х	х	х	х	x	х		х	Х		х	х	х	x		
ZZZZZZ	1.00	2004							Γ	Ī																	
IDOLPDSSD14100	1.00	2009		x	х	х	х	х	X	x	Х	x	х	х	х	x	Х		х	Х	L	X	х	х	х		
IDOLPDPSD13	1.00	2014		х	х	х	х	х	х	х	х	х	х	х	х	x	х		х	х	L	х	х	Х	х	х	
IDOLADPSD12	1.00	2019		х	х	х	Х	х	х	Х	х	х	х	х	х	х			х	Х		х	Х	Х	х	Х	Ĺ
IDOLSTPSD07	1.00	2024		_	х	-				·		_		_			х		х	х		х	х	х	х	Х	
CCV	1.00	2029			х				-				_			_			х	Х		х	х	х	х	Х	
ССВ	1.00	2035	Ì	•	х				•	-		•		_					х	х	Π	x	х	х	х	x	Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 8/30/2003 End Date: 8/30/2003

EPA													7	lna	ly	te	s										
Sample	D/F	Time	% R	A	S	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	A	N	T	V	Z	C
No.				L	В	s	A	E	D	A	R	0	บ	E	В	G	И	G	Ι		E	G	A	L		И	N
IDOLSTSSD06	1.00	2040		Х	Х	х	х	х	Х	Х	X	Х	Х	х	Х	Х	Х		X	X		X	Х	X	X	Х	
IDOLPDSSD14D	1.00	2045		х	х	х	x	х	X	X	Х	x	x	x	х	х	х		X	Х		X	Х	x	x		
IDOLPDSSD14S	1.00	2050		х	х	x	x	х	х	Π	X	х	x	x	х		x		x			X		X	x		
ICSA	1.00	2055		х	х	x	x	х	х	x	х	х	х	х	х	х	х		Х	X		X	x	x	x	x	Г
ICSAB	1.00	2100		х	х	x	x	x	x	x	Х	х	х	x	x	X	х		Х	X		X	х	х	х	х	Γ
CRI	1.00	2105		х	х	х	x	х	x	x	Х	х	х	х	х	х	х		Х	X		X	х	х	Х	х	Γ
ccv	1.00	2110		х	х	x	x	x	х	x	X	х	х	х	Х	Х	х		Х	Х		X	x	х	х	х	
CCB	1.00	2115		х	Х	х	х	х	x	x	x	х	lх	х	х	x	х		х	х		х	х	х	х	х	Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 6 Method: P

Start Date: 9/7/2003 End Date: 9/7/2003

EPA				<u> </u>									A	na	ly	te:											
Sample	D/F	Time	% R	A	s	A	В	В	С	С	С	С	С	F	P	М	м	Н	N	K	S	A	N	T	⊽⊺	Z	С
No.				L	В	s	A	E		A		0	υ			G		G	I		E		A	r			И
S0	1.00	1624																			Х				Ì	1	
S	1.00	1628																									_
S	1.00	1631																			x						_
S	1.00	1635																							\Box		_
LRS	1.00	1640																			$ \mathbf{x} $						_
LRS	1.00	1644																			х				\Box		_
LRS	1.00	1648						i											.		Х						_
ICV	1.00	1652																			Х						_
ICB	1.00	1657																			x						_
ICSA	1.00	1701																			х					\Box	
ICSAB	1.00	1705			L																х						
CRI	1.00	1709																			х						
ccv	1.00	1713																			x						_
CCB	1.00	1717																			x			[\Box	_
PBS0820D	1.00	1721																			Х					\Box	_
LCSS0820D	1.00	1725																			Х					\Box	_
IDOLSTSSD05	1.00	1730					Ī														х					\Box	_
IDOLPDSSD14	1.00	1734																			Х						_
IDOLPDSSD14L	5.00	1738																			Х						
IDOLPDSSD14A	1.00	1742																			x					\Box	
IDOLPDSSD14100	1.00	1746																			Х					\Box	
IDOLPDPSD13	1.00	1750		Ī																	Х					\Box	_
IDOLADPSD12	1.00	1754		Π																	Х					\Box	_
IDOLSTPSD07	1.00	1758																			х	L.				\Box	_
ccv	1.00	1802		П	Π																Х					\Box	_
CCB	1.00	1806																			Х						
IDOLSTSSD06	1.00	1810																			Х						
IDOLPDSSD14D	1.00	1814																			Х						
IDOLPDSSD14S	1.00	1818		Ī						Π											Х						_
ZZZZZZ	1.00	1822																								\Box	
ZZZZZZ	1.00	1826									Ĺ																
ZZZZZZ	1.00	1830																									
ZZZZZZ	1.00	1835					Ĺ																				
ZZZZZZ	1.00	1839																									
ZZZZZZ	1.00	1843		Γ																							_
ZZZZZZ	1.00	1847							Ī -																		_
CCV	1.00	1851																			Х						
CCB	1.00	1855		<u> </u>						1											х					\Box	_

14

ANALYSIS RUN LOG

 Lab Name: STL BURLINGTON
 Contract: 23046

 Lab Code: STLVT
 Case No.: 23046
 SAS No.: SDG No.: IDD001

Instrument ID Number: TJA ICAP 6 Method: P

Start Date: 9/7/2003 End Date: 9/7/2003

EPA													A	na	ly	te	S									
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	s	Α	И	Т	V	Z
No.				L	В	S	A	E	D	A	R	0	ט	E	В	G	N	G	I		E	G	A	L		N :
ZZZZZZ	1.00	1859																							_	
ZZZZZZ	1.00	1903					<u> </u>	<u> </u>												L	<u>L</u>		Щ		_	\dashv
ZZZZZZ	1.00	1907					L				<u> </u>									L		<u> </u>	Щ		ᆜ	4
ZZZZZZ	5.00	1911		Ĭ														<u> </u>		L	<u> </u>	<u> </u>	Ш		_	\dashv
ZZZZZZ	1.00	1915		<u> </u>			<u> </u>												L	L	<u> </u>	<u> </u>			_	4
ZZZZZZ	1.00	1919		l														L				L			_	\dashv
ZZZZZZ	1.00	1923																			<u> </u>		Ш		_	
ICSA	1.00	1927																<u> </u>			Х	<u> </u>	Ш			ightharpoonup
ICSAB	1.00	1932																			X					
CRI	1.00	1936																			x	<u> </u>				
CCV	1.00	1940																		L	X					_
ССВ	1.00	1944		Π						1							1	1		1	X					

Geotechnical Analysis Sample Data Summary Package

Sample preparation method:

D2217

Client: EASEAT Client Code: **EASEAT** Project No.: Job No.: 23046 N/A

95004 ETR(s) #: SDG(s): IDD001

25-Jul-03 Date Received:

Specific Gravity:

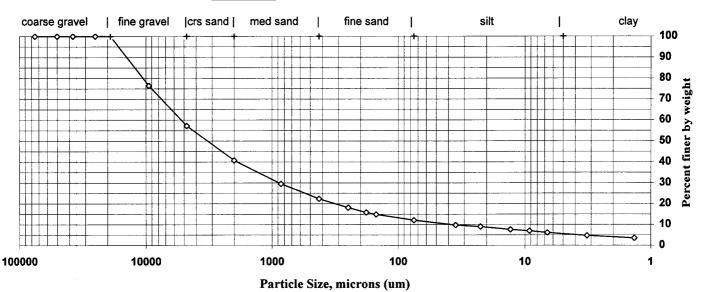
Non-soil mass:

Start Date: 12-Aug-03

End Date: 21-Aug-03

19 mm

Lab ID: 535843 Sample ID: SD05


Percent Solids: 76.1%

0.0%

2.65 (assumed) **Maximum Particle Size:**

Shape (> #10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	76.5	23.5
#4	4750	57.2	19.3
#10	2000	40.8	16.5
#20	850	29.5	11.2
#40	425	22.4	7.2
#60	250	18.1	4.3
#80	180	15.8	2.3
#100	150	14.9	0.9
#200	75	12.1	2.8
Hydrometer	35.1	9.8	2.4
	22.3	9.0	0.7
	13.0	7.6	1.4
	9.2	6.9	0.7
l l	6.6	6.1	0.8
	3.2	4.7	1.4
V	1.4	3.5	1.2

Soil	Percent of
Classification	Total Sample
Gravel	42.8
Sand	45.1
Coarse Sand	16.5
Medium Sand	18.4
Fine Sand	10.3
Silt	6.0
Clay	6.1

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

Client: **EASEAT** Client Code: **EASEAT** Project No.: Job No.:

23046 N/A

95004 ETR(s) #: IDD001

Date Received:

25-Jul-03

Specific Gravity:

Start Date: 12-Aug-03

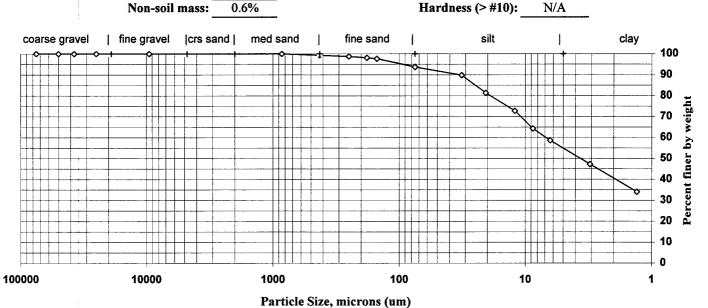
SDG(s):

Lab ID: 535844

End Date: 21-Aug-03

Sample ID: SD14

Percent Solids: 43.6%


2.65

(assumed)

Maximum Particle Size: Med sand

Shape (>#10):

N/A N/A

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	100.0	0.0
#10	2000	100.0	0.0
#20	850	100.0	0.0
#40	425	99.3	0.7
#60	250	98.7	0.6
#80	180	98.1	0.6
#100	150	97.6	0.4
#200	75	93.7	3.9
Hydrometer	32.2	89.8	3.9
I	20.7	81.3	8.5
I	12.1	72.8	8.5
.	8.7	64.3	8.5
I	6.3	58.6	5.7
	3.1	47.3	11.3
V	1.3	34.0	13.2

Soil	Percent of
Classification	Total Sample
Gravel	0.0
Sand	6.3
Coarse Sand	0.0
Medium Sand	0.7
Fine Sand	5.6
Silt	35.1
Clay	58.6

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

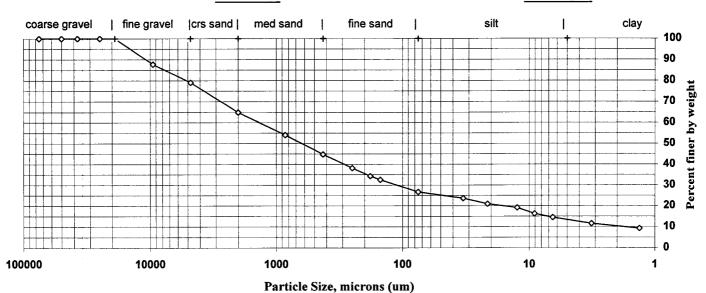
D2217

23046 ETR(s) #: 95004 Client: **EASEAT** Project No.: SDG(s): IDD001 Client Code: **EASEAT** Job No.: N/A Date Received: 25-Jul-03 Start Date: 12-Aug-03 End Date: 21-Aug-03

Lab ID: 535846 **Sample ID:** SD13

Percent Solids: 70.3%
Specific Gravity: 2.65

Non-soil mass:


 $\frac{70.3\%}{2.65}$ (assumed)

0.0%

Maximum Particle Size:

Shape (> #10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	87.7	12.3
#4	4750	79.0	8.6
#10	2000	64.9	14.1
#20	850	54.1	10.8
#40	425	44.8	9.3
#60	250	38.3	6.5
#80	180	34.4	3.9
#100	150	32.6	1.8
#200	75	26.7	5.9
Hydrometer	33.2	23.7	3.0
	21.4	20.9	2.8
:	12.5	19.1	1.8
. 1	9.1	16.3	2.8
	6.5	14.5	1.8
i i	3.2	11.5	2.9
V	1.3	9.2	2.3

Soil	Percent of
Classification	Total Sample
Gravel	21.0
Sand	52.4
Coarse Sand	14.1
Medium Sand	20.1
Fine Sand	18.1
Silt	12.2
Clay	14.5

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: **EASEAT** Client Code: **EASEAT** Project No.: Job No.:

23046 N/A

95004 ETR(s) #: IDD001 SDG(s):

19 mm

Date Received: 25-Jul-03

Start Date: 12-Aug-03

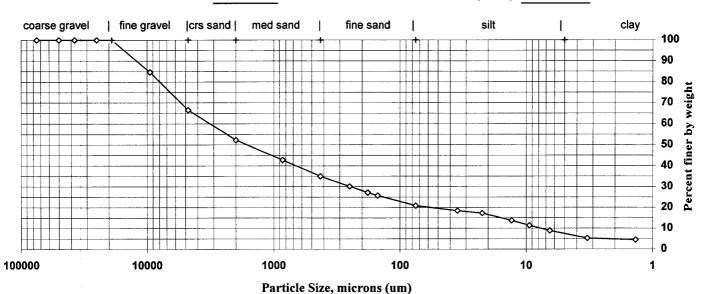
End Date: 21-Aug-03

Lab ID: 535847 Sample ID: SD12

Percent Solids: Specific Gravity:

Non-soil mass:

62.6% 2.65


1.8%

(assumed)

Maximum Particle Size:

Shape (> #10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	84.6	15.4
#4	4750	66.5	18.2
#10	2000	52.3	14.2
#20	850	42.7	9.6
#40	425	35.0	7.7
#60	250	30.1	4.9
#80	180	27.2	2.9
#100	150	25.8	1.4
#200	75	20.9	4.9
Hydrometer	35.0	18.5	2.4
1	22.2	17.3	1.2
. 1	13.0	13.8	3.5
1	9.4	11.4	2.4
1	6.5	8.8	2.6
	3.3	5.3	3.5
V	1.4	4.5	0.8

Soil	Percent of
Classification	Total Sample
Gravel	33.5
Sand	45.6
Coarse Sand	14.2
Medium Sand	17.3
Fine Sand	14.2
Silt	12.0
Clay	8.8

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: **EASEAT** Client Code: **EASEAT**

23046 Project No.: Job No.: N/A

95004 ETR(s) #: SDG(s): IDD001

Date Received:

25-Jul-03

Start Date: 12-Aug-03

End Date: 21-Aug-03

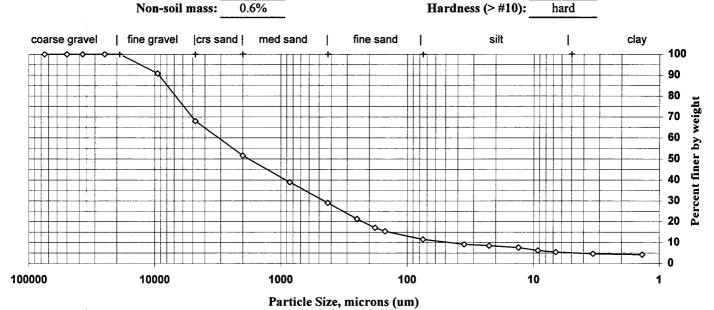
Lab ID: 535848

Sample ID: SD07

Percent Solids: 73.1%

Specific Gravity:

2.65


(assumed)

Maximum Particle Size:

19 mm

Shape (> #10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	90.8	9.2
#4	4750	68.0	22.8
#10	2000	51.6	16.4
#20	850	38.9	12.7
#40	425	29.0	9.8
#60	250	21.3	7.7
#80	180	17.1	4.2
#100	150	15.5	1.7
#200	75	11.5	3.9
Hydrometer	35.5	9.2	2.4
	22.5	8.4	0.7
1	13.2	7.6	0.8
	9.2	6.2	1.4
	6.7	5.4	0.7
ļ .	3.4	4.6	0.8
V	1.4	4.2	0.4

Soil	Percent of
Classification	Total Sample
Gravel	32.0
Sand	56.5
Coarse Sand	16.4
Medium Sand	22.6
Fine Sand	17.5
Silt	6.1
Clay	5.4

Dispersion Device: Mechanical mixer with

a metal paddle.

Sample preparation method:

D2217

Client: EASEAT

Project No.: 23046

Job No.: N/A

ETR(s) #: 95004 SDG(s): IDD001

Client Code: EASEAT

Date Received: 25-Jul-03

25-Jul-03

Job No.: N/A Start Date: 12-Aug-03

End Date: 21-Aug-03

Lab ID: 535849 Sample ID: SD06

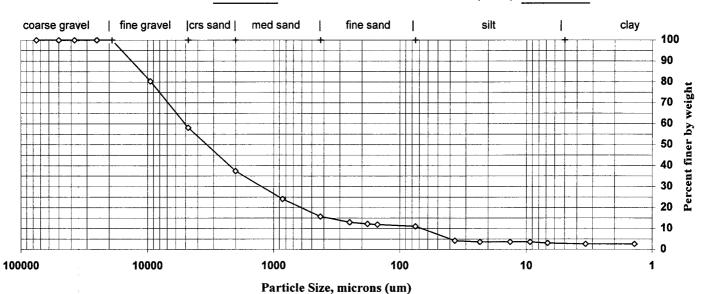
Percent Solids: 84.9%

Specific Gravity:

Non-soil mass:

2.65 (

0.1%


(assumed)

Maximum Particle Size:

19 mm

Shape (> #10): subangular

Hardness (> #10): hard

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	80.4	19.6
#4	4750	58.1	22.3
#10	2000	37.4	20.7
#20	850	24.1	13.3
#40	425	15.7	8.3
#60	250	13.0	2.7
#80	180	12.2	0.8
#100	150	11.9	0.3
#200	75	11.1	0.8
Hydrometer	36.5	4.2	6.9
	23.2	3.6	0.6
<u> </u>	13.4	3.6	0.0
	9.3	3.6	0.0
	6.8	3.1	0.6
	3.4	2.6	0.5
V	1.4	2.6	0.0

Soil	Percent of
Classification	Total Sample
Gravel	41.9
Sand	47.0
Coarse Sand	20.7
Medium Sand	21.6
Fine Sand	4.7
Silt	8.0
Clay	3.1

Dispersion Device: Mechanical mixer with

a metal paddle.

STL Burlington Colchester, Vermont

Sample Data Summary Package

SDG: IDS001

September 23, 2003

Ms. Cathy Bohike **EA Engineering** 12011 Bellevue-Redmond Rd. Suite 200 Bellevue, WA 98005

Re: Laboratory Project No. 23046

Case No. 23046; SDG: IDS001

Dear Ms. Bohlke:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 26, 2003. Laboratory numbers have been assigned and designated as follows:

<u>Lab ID</u>	Client	Sample	Sample
	<u>Sample ID</u>	<u>Date</u>	<u>Matrix</u>
	Received: 07/26/03 ETR No	o: 95023	
535893 535894 535895 535896 535897 535898 535899 535900 535901 535902 535903 535903DP 535904 535904DP 535904DP 535905 535906 535907	IDOLWPSSS090.5 IDOLWPSUS033.5 IDOLWPSUS033.5SPLP IDOLWPSUS041.0 IDOLTASSS110.5 IDOLWPSSS010.5 IDOLWPSSS170.5 IDOLWPSSS170.5 IDOLWPSUS185.5 IDOLWPSUS185.5SPLP IDOLBKSSS080.5MS IDOLBKSSS080.5REP IDOLBKSSS080.5SPLP IDOLBKSSS080.5SPLP IDOLBKSSS080.5SPLP IDOLBKSSS080.5SPLP IDOLBKSSS080.5SPLP IDOLBKSSS080.5SPLPREP IDOLWPSUS18100 IDOLWPSUS18100SPLP IDOLWPSUS18100SPLP IDOLTASSS190.3	07/21/03 07/21/03 07/21/03 07/21/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03 07/22/03	Soil Soil Extract Soil Soil Soil Soil Soil Extract Soil Soil Extract Soil Extract Extract Extract Extract Soil Extract
535908	IDOLTASSS200.5	07/22/03	Soil
535909	IDOLTASUS201.0	07/23/03	Soil
	Received: 07/26/03 ETR No	o: 95024	
535911	IDOLWPSUS023.5	07/21/03	Soil
535912	IDOLWPSSS210.5	07/22/03	Soil

Severn Trent Laboratories, Inc.

STL Burlington • 208 South Park Drive, Suite 1, Colchester, VT 05446

Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
Received: 07/26/03 ETR No:	95024 (Cont.)	
IDOLWPSSS030.5	07/21/03	Soil Extract
IDOLWPSSS020.5	07/21/03	Soil Soil
	Sample ID Received: 07/26/03 ETR No: IDOLWPSSS030.5 IDOLWPSSS030.5SPLP IDOLWPSSS020.5	Sample ID Date Received: 07/26/03 ETR No: 95024 (Cont.) IDOLWPSSS030.5 07/21/03 IDOLWPSSS030.5SPLP 07/21/03

Due to reporting software limitations, sample identifications may have been truncated. In most instances only punctuation was removed. Please note that the "SPLP" suffix refers to the lab generated Synthetic Precipitation Leachate Procedure (SPLP) extract.

This narrative identifies anomalies that occurred during the analyses of samples in this delivery group. If there is no description following regarding a certain methodology requested on the chain-of-custody record, then there were no exceptions to the laboratory quality control criteria noted during that analysis.

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal. Please note that the samples identified as IDOL-WP-SUS-04-1.0 and IDOL-TA-SUS-20-1.0 listed on the chain-of-custody form were not received. Two samples identified as IDOL-WP-SSS-04-1.0 and IDOL-TA-SUS-22-1.0 were received but not listed on the chain-of-custody form. These samples had the same collection dates and times as those listed on form but not received. The laboratory logged samples from the chain-of-custody form.

Metals by ICP / CVAA

The recoveries of antimony and selenium from the laboratory fortified aliquot of sample IDOLBKSSS080.5 were 16.7 percent and 44.3 percent, respectively. Corresponding sample results have been flagged with an "N". Recovery from the laboratory control samples proved acceptable. Recovery from the post digestate spike of this same sample proved acceptable.

Please note that the sample identified as IDOLWPSUS18100 displayed a slight negative interference (concentration less than 0 but greater than -10 ppb) for cadmium. Samples IDOLWPSSS090.5, IDOLWPSUS033.5, and IDOLTASUS201.0 displayed a more severe negative interference (concentration less than -10 but greater than -20 ppb) for cadmium.

The laboratory noted that the sample identified as IDOLWPSSS010.5 saturated the instrument during an initial analysis due to high concentrations of lead. The sample was reanalyzed at various dilutions and results have been reported from the 10x dilution. Please note that the sodium results, also reported from the 10x dilution analysis, indicate a severe negative interference.

Reportable concentrations of sodium were detected in one or more of the SPLP preparation blanks associated with this delivery group. The laboratory noted that the digestion preparation

Ms. Cathy Bohlke September 23, 2003 Page 3 of 3

blanks associated with the above samples did not contain metals in concentrations greater than their respective reporting limits.

Please note that not all elements were included in the matrix spiking solution for the SPLP extract. The routine protocol of spiking with only the Toxicity Characteristic Leachate Procedure (TCLP) / SEM elements was followed. The spiking solution thus contained arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver plus copper and zinc.

The percent difference between the original determination and serial dilution determination for aluminum (11.4%) in sample IDOLBKSSS080.5SPLP was above the control criteria of ±10%. Matrix interference is suspected and results have been flagged with an "E" accordingly.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page 0577.

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely,

Michael F. Wheeler, Ph.D.

Laboratory Director

Enclosure MFW/jtw/jmm

0001-C

SEVERN TRENT

STL Burlington208 South Park Drive, Suite 1
Colchester, VT 05446 Tel 802 655 1203 SEVERN TRENT LABORATORIES, INC.

CHAIN OF CUSTODY RECORD

Lab Use Only Due Date:	Temp. of coolers when received (C°):		Lab/Sample ID (Lab Use Only)								Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	STL cannot accept verbal changes. Please Fax written changes to (802) 655-1248
		Splo Cynibe Cynibe	\rightarrow	× ×	× × ×	×	>		Remarks		Client's delivery of samples constitutes acceptance of terms and conditions contained in the Price Schedule.	Sludge 0 - Oil
ANALYSIS REQUESTED		Share SAT	\rightarrow	× ×	╁┼	×	×		Time 10%	 	Time	al Tube SL - Plastic or other
to:		iype of Containe	VOA A/G 250 P/O	7 7	2 2	7	2		Pate 1	Date	e Date	Air bag C - Charco ide mouth P/O -
Invoice to:	1 1 1 1 1 1	Sampler's Signature Coothy, 130 h 1 kc		12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	03-0.5	22 - 0.5	23-0.5		Received by: (Signature	Received by: (Signature	Received by: (Signature	L - Liquid 250 ml -
	(A)	CPT TINE	Identifying Marks of Sample(s)	TDOL- WP-505-02-3,5	TOOL - WP-555-03-0.5	IDOL-WP-535-02-0.5	IDDU-TA-555- ?		Date 5. Time	Date Time	Date Time	W - Water S - Soil A/G - Amber / Or Glass 1 Liter
Report to: Company: EA ENGINERING] 키 귤 된 / 이 이 의	INDERIOR NAME Project Name C G	rix! Date Time o r p b	S 7/21 7:40 × 1	x 05.5 12/1	S 7/61 7:10 X Z	5 7/23 CW X 3		Relinguished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	'Matrix WW - Wastewater 'Container VOA - 40 ml vial

SEVERN STL SEVERN TRENT LABORATORIES, INC.

STL Burlington 208 South Park Drive, Suite 1 Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD

Lab Use Only Due Date: Temp. of coolers when received (C°): 1 2 3 4 5 Custody Seal N / Y Intact N / Y Screened For Radioactivity		Lab/Sample ID (Lab Use Only)										Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule.	STL cannot accept verbal changes. Please Fax written changes to (802) 655-1248
	SPLP SPLP SPLP	x	У У У	*		* *) >	4	K K K	Remarks		Client's delivery of samples constitutes acceptance of terms and conditions contained in the Price Schedule.	Sludge 0 Oil
Analysis Requested	SATAN JAT	× ×	у У	*		4 4	× ;	*	y y	Time (%)	Time	Time	SL or other
	No/Type of Containers ²	1 Lt. ml	2	2	7 1	1 11	2) 1	4	2	Date	Date	Date	A - Air bag C - Charcoal Tube Glass wide mouth P/O - Plastic
Company: Company: Contact: Phone: Fax:	Sampler's Signature	<i>S</i> .	03-3.5	01-40	. 0.5	, 0,5	7-0.5	08-0.5 (+ ms)		Received by: (Signature	Received by: (Signature	Received by: (Signature	L - Liquid 250 ml -
	Sample	1900 - WP -554. 09-05	WP-545-03	WP-545-04	11 - 555 - 11	WP-555-01-05		42-545- 18-0-5	WP-545-18-100	1/03 620g	—	Time	W - Water S - Soil A/G - Amber / Or Glass 1 Liter
ort to: Sellevuer-Redund JUA 90005 Dob 1100 TT450 T1-7800	2	TOOC - WK	TOOL- WY	Dot. W		100c- M 100c- T	7	DO01 - 1001	ا, ا	Date 7/24/03	Date	Date	
Report to: Company: FREND Address: 12011 ASILVUEL-R Political Contact: Cuthul Boh ILC Phone: (425)4577480 Fax: (425)4577480 Contract Quote:	CAMM 30H	π συτο π σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	7/2 5:30	x 241 6230 X	7/22 (0:15 X	5 7/22 11:40 x	7/22 1:30 X	x 0.21 121/ 5		Religquished by: (Signature)	Relinquished by: (Signature)	Relinquished by: (Signature)	'Matrix WW - Wastewater 2Container VOA - 40 ml vial

SEVERN STL SEVERN TRENT LABORATORIES, INC.

STL Burlington208 South Park Drive, Suite 1
Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD

Lab Use Only Due Date: Temp. of coolers when received (C*): 1 2 3 4 5 Custody Seal N / Y Intact N / Y Screened For Radioactivity	Lab/Sample ID (Lab Use Only)				Client's delivery of samples constitutes acceptance of Severn Trent Laboratories terms and conditions contained in the Price Schedule. STL cannot accept verbal changes. STL cannot accept verbal changes. Please Fax written changes to R02) 655-1248
	CAMOPE	× × ×	×	Kemarks	Client's delivery of samples constitutes acceptance of terms and conditions contained in the Price Schedule. Sludge 0 0 0il STL cannot Please Fa
Analysis Requested	sturkst TAT	× × × ×	*	1 Time	Time SL -
- J. C	No/Type of Containers² VOA A/G 250 P/O	7 7 1	2	Date	Air bag C - Charco
Invoice to: Company: SATE Address: Contact: Phone: Fax:	Sampler's Signature	0.3 0-0.5 0-1.0	23-0.5	Received by: (Signature	Received by: (S L - Liquid 250 ml -
0	MVN C	IDOL - TA - 555 - 19 - 0.3 IDOL - TA - 555 - 20 - 0.5 TDOL - TA - 505 - 20 - 1.0	TA-555.	Date en Time	Date Time W - Water S - Soil A/G - Amber / Or Glass 1 Liter
Report to: Company: EA ENGINERA ING. Address: (2011 Belevie - Rodnam Re. Relevie WA - 98005 Contact: CATH Sõu Lee Phone: 425-451-7400 #144 Fax: 425-451-7800 Contract/ Oucte:	Göhlke Project Name Of ICO C. Time 0 7 7	· × × ×	5 7/23 11.75 K IDOL-	Relinquished by: (Signature) Relinquished by: (Signature)	Relinquished by: (Signature) 'Matrix WW - Wastewater 'Container VOA - 40 ml vial

Sample Data Summary Package For Wet Chemistry

Sample Report Summary

Client Sample No.

IDOLWPSSS090.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535893

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 93.4

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.2	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		93.4	
			•					
		1						
		,						
							:	

Printed on: 09/19/03 09:42 AM

Sample Report Summary

Client Sample No.

IDOLWPSUS033.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535894

Matrix: SOIL

.. Client: EASEAT

Date Received: 07/26/03

% Solids: 86.9

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.1	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		86.9	
						1		
							!	
į								
						İ		
·								
							1	

Printed on: 09/19/03 09:43 AM

Sample Report Summary

Client Sample No.

IDOLWPSUS041.0

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535896

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 92.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	2.7	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		92.7	
				ļ				
.								
								!
	·							
				İ				
							t	
				1				

Printed on: 09/19/03 09:43 AM

Sample Report Summary

Client Sample No.

IDOLTASSS110.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535897

Matrix: SOIL

Client: EASEAT ...

Date Received: 07/26/03

% Solids: 94.6

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	7.0	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		94.6	
	·							
		1						
	·							

Printed on: 09/19/03 09:44 AM

Sample Report Summary

Client Sample No.

IDOLWPSSS010.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535898

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 93.5

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.4	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		93.5	
	·							
						:		
			:					
	•							
						į		
		1	<u> </u>			1		l

Printed on: 09/19/03 09:45 AM

Sample Report Summary

Client Sample No.

IDOLTASSS100.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535899

Matrix: SOIL

Client: EASEAT

.. Date Received: 07/26/03

% Solids: 95.8

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qua
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	6.6	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		95.8	
								İ
								ŀ
						Ì		
			:					
				-				
İ								
İ								
					-			
]	
·								
								1.

Printed on: 09/19/03 09:45 AM

Sample Report Summary

Client Sample No.

IDOLWPSSS170.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535900

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 89.8

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.7	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		89.8	
							•	
					٠			
		1					·	
1		1 1		i			l	<u> </u>

Printed on: 09/19/03 09:46 AM

Sample Report Summary

Client Sample No.

IDOLWPSUS185.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535901

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 90.9

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03	Batch	pH Units	1	0.00	3.4	
	Solids, Percent	07/29/03	N/A	%	1.0		90.9	
IN623	Solias, Percent	07/29/03	N/A	/•	1.0		00.0	
-								
								ļ
1	i		1	1		1	ļ	1

Printed on: 09/19/03 09:46 AM

Sample Report Summary

Client Sample No.

IDOLBKSSS080.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535903

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 93.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	6.7	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		93.7	
						•		
						:		,
						İ		
1		1		1				1

Printed on: 09/19/03 09:47 AM

Sample Report Summary

Client Sample No.

IDOLWPSUS18100

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535905

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 87.9

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.4	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		87.9	
	,							
						2		
						[:	
								<u> </u>
		:					1	

Printed on: 09/19/03 09:48 AM

Sample Report Summary

Client Sample No.

IDOLTASSS190.3

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535907

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 69.3

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	7.0	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		69.3	
				-				
					-			
	-							
					,			
						:		
						•		
						1		

Printed on: 09/19/03 09:48 AM

Sample Report Summary

Client Sample No.

IDOLTASSS200.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535908

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 93.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	6.4	:
IN623	Solids, Percent	07/29/03	N/A	%	1.0		93.7	
					:			
					:			
İ								
			:					
								ļ
1		I	I	1	ì	i	I	1

Printed on: 09/19/03 09:49 AM

Sample Report Summary

Client Sample No.

IDOLTASUS201.0

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535909

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 91.2

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
90408	Corrosivity by pH	08/02/03		pH Units	1	0.00	7.0	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		91.2	
				,				

Printed on: 09/19/03 09:49 AM

Sample Report Summary

Client Sample No.

IDOLWPSUS023.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535911

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 87.0

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	4.2	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		87.0	
							'	
						:		:
							:	
]				

Printed on: 09/19/03 09:50 AM

Sample Report Summary

Client Sample No.

IDOLWPSSS210.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535912

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 95.4

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	8.5	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		95.4	
							:	
						[]		
					1			
]		
		1						
								<u>}</u>
						1		

Printed on: 09/19/03 09:50 AM

Sample Report Summary

Client Sample No.

IDOLWPSSS030.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535913

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 90.6

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	3.6	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		90.6	
						•		
								i

Printed on: 09/19/03 09:50 AM

Sample Report Summary

Client Sample No.

IDOLWPSSS020.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535915

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 92.8

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	2.8	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		92.8	
								<u> </u>
			:					
	T							
						6		
		1						

Printed on: 09/19/03 09:51 AM

Sample Report Summary

Client Sample No.

IDOLTASSS230.5

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535916

Matrix: SOIL ...

Client: EASEAT

Date Received: 07/26/03

% Solids: 92.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
9040B	Corrosivity by pH	08/02/03		pH Units	1	0.00	7.6	
IN623	Solids, Percent	07/29/03	N/A	%	1.0		92.7	
		į.						
							:	

Printed on: 09/19/03 09:51 AM

Duplicate Sample Report Summary

Client Sample No.

IDOLBKSSS080.5REP

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535903DP

Matrix: SOIL

Client: EASEAT

Date Received: 07/26/03

% Solids: 93.1

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Samp Resu Conc.	ole ult Qual.	Duplic Sample Conc.	cate Result Qual.	RPD*
9040B	Corrosivity by pH	08/02/03		pH Units	6.7		6.7		0
IN623	Solids, Percent	07/29/03	N/A	%	93.7		93.1		1

* Control Limit for RPD is +/- 20%, unless otherwise specified.

Printed on: 09/19/03 09:47 AM

Laboratory Control Sample Report Summary

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Matrix: SOIL

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Analytical Run Date	Analytical Batch	Units	LCS Conc.	True Value	% Recovery*
LCSPH0802A	9040B	Corrosivity by pH	08/02/03		pH Units	6.0	6.0000	100.5
İ								:
						•		

^{*} Control Limit for Percent Recovery is 80-120%, unless otherwise specified.

Printed on: 09/19/03 09:53 AM

Laboratory Control Sample Duplicate Report Summary

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDS001

Lab Code: STLVT

Case No.: 23046

Matrix: SOIL

Client: EASEAT

% Solids:

Lab Sample ID	Method	Parameter	Analytical Run Date	Analytical Batch	Units	LCSD Conc.		% Recovery*	RPD*
LCSDPH0802A	9040B	Corrosivity by pH	08/02/03		pH Units	6.0	6.0000	100.5	0
					ļ.				
				•					
							1		
	:								
								i	

^{*} Control Limit for Percent Recovery is 80-120%, unless otherwise specified.
** Control Limit for RPD is +/- 20%, unless otherwise specified.

Printed on: 09/19/03 09:53 AM

Sample Data Summary Package For Metals

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Name: STL BU	JRLINGTON C	Contract: <u>23046</u>	
Lab Code: STLVT	Case No.: 23046	SAS No.:	SDG No.: IDS001
SOW No.: ILM04.	.1		
	EPA Sample No.	Lab Sample ID.	
	IDOLBKSSS080.5	535903	
	IDOLBKSSS080.5D	535903 535903DP	
	IDOLBKSSS080.55	535903MS	
	IDOLTASSS100.5	535905/45	
	IDOLTASSS100.5	535897	
	IDOLTASSS190.3	535997	
	IDOLTASSS200.5	535907	· · · · · · · · · · · · · · · · · · ·
	IDOLTASSS230.5	535916	· ·
	IDOLTASUS201.0	535910	
	IDOLWPSSS010.5	535898	
	IDOLWPSSS010.5	535915	
	IDOLWPSSS030.5	535913	
	IDOLWPSSS090.5 IDOLWPSSS170.5	535893	
	IDOLWPSSS170.5	<u>535900</u> 535912	
	IDOLWPSUS023.5	535912	
	IDOLWPSUS033.5	535911	
	IDOLWPSUS041.0	535894	
	IDOLWPSUS18100	535995	
	IDOLWPSUS185.5	535905	
Were ICP inter	element corrections applied?	,	Ves/No YES
	round corrections applied? re raw data generated before	.	Yes/No YES
	on of background corrections		Yes/No NO
Comments:			
contract, both above. Release computer-readab	this data package is in com technically and for complet of the data contained in t le data submitted on disket Manager's designee, as veri	eness, for other than the his hardcopy data packag te has been authorized b	he conditions detailed ge and in the by the Laboratory
Signature:		Name:	
Date:		Title:	

COVER PAGE - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLBKSSS	Λ	0	$\overline{}$	E	
TDOTTOVOOO	u	0	v	3	

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

 Matrix (soil/water):
 SOIL
 Lab Sample ID:
 535903

 Level (low/med):
 Low
 Date Received:
 07/26/03

% Solids: 93.7

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	13600			P
7440-36-0	Antimony	8.0	1	N	P
7440-38-2	Arsenic	107	T	I	P
7440-39-3	Barium	424	1		P
7440-41-7	Beryllium	0.64	i		P
7440-43-9	Cadmium	0.032	ש		P
7440-70-2	Calcium	4010	Ţ]	P
7440-47-3	Chromium	6.3	1		P
7440-48-4	Cobalt	11.0			P
7440-50-8	Copper	27.4	T		P
7439-89-6	Iron	32400	1	1	P
7439-92-1	Lead	17.2	1		P
7439-95-4	Magnesium	1250			P
7439-96-5	Manganese	1410			P
7439-97-6	Mercury	0.10	1	l	CV
7440-02-0	Nickel	11.5	1	1	P
7440-09-7	Potassium	2880			P
7782-49-2	Selenium	2.0	Ī	N	P
7440-22-4	Silver	0.21	В	1	P
7440-23-5	Sodium	393	В	l	P
7440-28-0	Thallium	3.5]	P
7440-62-2	Vanadium	30.9	1		P
7440-66-6	Zinc	102			P
57-12-5	Cyanide	0.50	U		AS

Color Before	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					
_					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLTAS	SS100.5

Lab Name:	STL BURLINGTON		Contract: 23046		
Lab Code:	STLVT Cas	No.: 23046	SAS No.:	SDG No.:	IDS001
Matrix (so	il/water): SOIL		Lab Sample ID:	535899	
Level (low,	/med): LOW	_	Date Received:	07/26/03	

% Solids: 95.8

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	11100			P
7440-36-0	Antimony	1.8	В	N	P
7440-38-2	Arsenic	26.2			P
7440-39-3	Barium	358			P
7440-41-7	Beryllium	0.55			P
7440-43-9	Cadmium	0.031	ט		P
7440-70-2	Calcium	3180		1	P
7440-47-3	Chromium	6.1		1	P
7440-48-4	Cobalt	9.2			P
7440-50-8	Copper	25.9		1	P
7439-89-6	Iron	26500		1	P
7439-92-1	Lead	35.6			P
7439-95-4	Magnesium	1850		1	P
7439-96-5	Manganese	701			P
7439-97-6	Mercury	0.48	T		CV
7440-02-0	Nickel	11.0			P
7440-09-7	Potassium	2650			P
7782-49-2	Selenium	1.6		и	P
7440-22-4	Silver	0.12	В		P
7440-23-5	Sodium	302	В		P
7440-28-0	Thallium	2.0			P
7440-62-2	Vanadium	23.9		1	P
7440-66-6	Zinc	78.2		1	P
57-12-5	Cyanide	0.46	שן	1	AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLTASSS110.5

Lab Name:	STL BURLINGTON		Contract: 23046		
Lab Code:	STLVT Ca	ase No.: 23046	SAS No.:	SDG No.:	IDS001
Matrix (so	il/water): SOII		Lab Sample ID:	535897	
Level (low	/med): LOW		Date Received:	07/26/03	

% Solids: 94.6

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	13700		1	P
7440-36-0	Antimony	1.8	В	N	P
7440-38-2	Arsenic	44.9	T		P
7440-39-3	Barium	299	I		P
7440-41-7	Beryllium	0.69	T		P
7440-43-9	Cadmium	0.029	U		P
7440-70-2	Calcium	4770	1		P
7440-47-3	Chromium	9.5			P
7440-48-4	Cobalt	12.8	T		P
7440-50-8	Copper	31.9	Ī		P
7439-89-6	Iron	32600	Ī		P
7439-92-1	Lead	12.7	1]	P
7439-95-4	Magnesium	3200	1		P
7439-96-5	Manganese	719			P
7439-97-6	Mercury	0.22			CV
7440-02-0	Nickel	16.7		1	P
7440-09-7	Potassium	2300	I	1	P
7782-49-2	Selenium	1.7	ı	N	P
7440-22-4	Silver	0.11	В		P
7440-23-5	Sodium	219	В		P
7440-28-0	Thallium	2.5			P
7440-62-2	Vanadium	34.3		1	P
7440-66-6	Zinc	74.8	1		P
57-12-5	Cyanide	0.50	שן	1	AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					
_				· · · · · · · · · · · · · · · · · · ·	. ,

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLTASSS190.3

Lab Name:	STL BURLINGTO	ON		Contract:	23046	· · · · · · · · · · · · · · · · · · ·	
Lab Code:	STLVT	Case No.:	23046	SAS No.	:	SDG No.:	IDS001
Matrix (soi	1/water): S	OIL		La	b Sample ID:	535907	
Level (low/	med): LOW			Da	te Received:	07/26/03	

% Solids: 69.3

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	13800			P
7440-36-0	Antimony	2.9	В	N	P
7440-38-2	Arsenic	87.3	Ī	1	P
7440-39-3	Barium	818			P
7440-41-7	Beryllium	0.85			P
7440-43-9	Cadmium	0.042	שן	1	P
7440-70-2	Calcium	6640		ļ	P
7440-47-3	Chromium	7.8			P
7440-48-4	Cobalt	15.2	1	1	P
7440-50-8	Copper	36.4			P
7439-89-6	Iron	45900		1	P
7439-92-1	Lead	30.7			P
7439-95-4	Magnesium	2370			P
7439-96-5	Manganese	740		l	P
7439-97-6	Mercury	0.42	l		CV
7440-02-0	Nickel	17.3			P
7440-09-7	Potassium	2530		1	P
7782-49-2	Selenium	2.5		И	P
7440-22-4	Silver	0.19	В		P
7440-23-5	Sodium	248	В		P
7440-28-0	Thallium	3.3		1	P
7440-62-2	Vanadium	32.3	1	1	P
7440-66-6	Zinc	264			P
57-12-5	Cyanide	0.71	Įυ		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDO	DLTASSS200.5	

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

 Matrix (soil/water):
 SOIL
 Lab Sample ID:
 535908

 Level (low/med):
 LOW
 Date Received:
 07/26/03

% Solids: 93.7

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	15700		ĺ	P
7440-36-0	Antimony	1.7	В	N	P
7440-38-2	Arsenic	39.8			P
7440-39-3	Barium	330		l	P
7440-41-7	Beryllium	0.68		ļ	P
7440-43-9	Cadmium	0.030	טן		P
7440-70-2	Calcium	3430	1	1	P
7440-47-3	Chromium	10.7			P
7440-48-4	Cobalt	21.5	T		P
7440-50-8	Copper	43.4	Ī		P
7439-89-6	Iron	36600			P
7439-92-1	Lead	12.4			P
7439-95-4	Magnesium	3210			P
7439-96-5	Manganese	1450			P
7439-97-6	Mercury	0.060			Cv
7440-02-0	Nickel	26.8			P
7440-09-7	Potassium	2410			P
7782-49-2	Selenium	2.0		И	P
7440-22-4	Silver	0.20	B	1	P
7440-23-5	Sodium	297	B		P
7440-28-0	Thallium	2.9			P
7440-62-2	Vanadium	35.8			P
7440-66-6	Zinc	104	1		P
57-12-5	Cyanide	0.53	ĮΨ		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

TDOT	TI A	000	220	E	
LDOL	ı LA	-	Z.3U		

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 2304	16 SAS No.:	SDG No.: IDS001
Matrix (soi	l/water): SOIL	Lab Sample ID:	535916
Level (low/	med): LOW	Date Received:	07/26/03

% Solids: 92.7

CAS No.	Analyte	Concentration	С	Ω	М
7429-90-5	Aluminum	13000			P
7440-36-0	Antimony	1.4	B	и	P
7440-38-2	Arsenic	198			P
7440-39-3	Barium	716]	P
7440-41-7	Beryllium	0.51		1	P
7440-43-9	Cadmium	0.056	U		P
7440-70-2	Calcium	3140			P
7440-47-3	Chromium	7.3	1		P
7440-48-4	Cobalt	11.6			P
7440-50-8	Copper	37.5			P
7439-89-6	Iron	23900			P
7439-92-1	Lead	27.5		j	P
7439-95-4	Magnesium	1860			P
7439-96-5	Manganese	557			P
7439-97-6	Mercury	0.15			CV
7440-02-0	Nickel	14.8			P
7440-09-7	Potassium	1590			P
7782-49-2	Selenium	0.32	U	N	P
7440-22-4	Silver	0.21	U		P
7440-23-5	Sodium	63.0	В		P
7440-28-0	Thallium	0.53	U		P
7440-62-2	Vanadium	27.2			P
7440-66-6	Zinc	54.5			P
57-12-5	Cyanide	0.52	U		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
		.,			

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOL'	וס ביד	1920	n 1	n

Lab Name:	STL BURLINGTON		Contract: 23046	
Lab Code:	STLVT Case	No.: 23046	SAS No.:	SDG No.: IDS001
Matrix (so	l/water): SOIL		Lab Sample ID:	535909
Level (low,	med): LOW		Date Received:	07/26/03

% Solids: 91.2

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	5290			P
7440-36-0	Antimony	2.7	В	N	P
7440-38-2	Arsenic	68.1		İ	P
7440-39-3	Barium	820			P
7440-41-7	Beryllium	0.61			P
7440-43-9	Cadmium	0.032	טן		P
7440-70-2	Calcium	4760		1	P
7440-47-3	Chromium	3.5	1		P
7440-48-4	Cobalt	12.5		1	P
7440-50-8	Copper	18.8			P
7439-89-6	Iron	38800	1		P
7439-92-1	Lead	13.0	Ī		P
7439-95-4	Magnesium	809	Ī		P
7439-96-5	Manganese	1010		Ì	P
7439-97-6	Mercury	0.35		ŀ	CV
7440-02-0	Nickel	9.9	T		P
7440-09-7	Potassium	2330			P
7782-49-2	Selenium	2.3	1	И	P
7440-22-4	Silver	0.096	טן		P
7440-23-5	Sodium	146	В		P
7440-28-0	Thallium	3.3		1	P
7440-62-2	Vanadium	24.4			P
7440-66-6	Zinc	91.0			P
57-12-5	Cyanide	0.51	שן		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments: —					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS010	. 5	

Lab Name:	STL BURLING	STON	Cor	tract:	23046	<u> </u>	
Lab Code:	STLVT	Case No.: 23	3046	SAS No.		SDG No.:	IDS001
Matrix (so	il/water):	SOIL		Lab	Sample ID:	535898	

Date Received: 07/26/03

% Solids: 93.5

Level (low/med): LOW

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2590	\vdash		P
7440-36-0	Antimony	24.6	İ	N	P
7440-38-2	Arsenic	847		l	P
7440-39-3	Barium	2060		1	P
7440-41-7	Beryllium	0.021	U		P
7440-43-9	Cadmium	27.1	T	1	P
7440-70-2	Calcium	992	Ī	1	P
7440-47-3	Chromium	1.2			P
. 7440-48-4	Cobalt	1.9	В		P
7440-50-8	Copper	167	1		P
7439-89-6	Iron	19900	1	1	P
7439-92-1	Lead	25300	1		P
7439-95-4	Magnesium	80.2	В		P
7439-96-5	Manganese	74.3			P
7439-97-6	Mercury	103			CV
7440-02-0	Nickel	2.3	В		P
7440-09-7	Potassium	2270			P
7782-49-2	Selenium	2.5		И	P
7440-22-4	Silver	45.0			P
7440-23-5	Sodium	225	ע]	P
7440-28-0	Thallium	14.5			P
7440-62-2	Vanadium	5.4			P
7440-66-6	Zinc	3510			P
57-12-5	Cyanide	0.52	U		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:		ng e	Philipping,		
	and the factors in the second				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS020.5

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001
Matrix (so	il/water): SOIL	Lab Sample ID:	535915
Level (low	/med): LOW	Date Received:	07/26/03

% Solids: 92.8

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2710			P
7440-36-0	Antimony	11.6	-	И	P
7440-38-2	Arsenic	114	-		P
7440-39-3	Barium	1770		ļ	P
7440-41-7	Beryllium	0.15	В		P
7440-43-9	Cadmium	0.96			P
7440-70-2	Calcium	3540			P
7440-47-3	Chromium	0.59	В		P
7440-48-4	Cobalt	1.3	В	1	P
7440-50-8	Copper	17.3			P
7439-89-6	Iron	17100		1	P
7439-92-1	Lead	1360			P
7439-95-4	Magnesium	255	В		P
7439-96-5	Manganese	88.6			P
7439-97-6	Mercury	1.7			CV
7440-02-0	Nickel	1.3	В		P
7440-09-7	Potassium	1850			P
7782-49-2	Selenium	0.56		И	P
7440-22-4	Silver	2.4		ļ	P
7440-23-5	Sodium	167	В		P
7440-28-0	Thallium	0.96	В		P
7440-62-2	Vanadium	5.3			P
7440-66-6	Zinc	218			P
57-12-5	Cyanide	0.53	ט		AS

Color	Before:	brown	Clarity Before:		Texture:	medium
Color	After:	pale yellow	Clarity After:	clear	Artifacts:	
Commer	nts:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS030.5

Lab Name:	STL BURLINGTO	ONN	,	Contract:	23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.:	IDS001
Matrix (so	il/water): So	OIL		Lab	Sample ID:	535913	·····
Level (low	/med): LOW			Dat	e Received:	07/26/03	······································

% Solids: 90.6

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2270	1		P
7440-36-0	Antimony	1.7	B	N	P
7440-38-2	Arsenic	43.7	1		P
7440-39-3	Barium	533			P
7440-41-7	Beryllium	0.21	В		P
7440-43-9	Cadmium	0.064	שן		P
7440-70-2	Calcium	17200			P
7440-47-3	Chromium	0.46	В		P
7440-48-4	Cobalt	3.6	В	1	P
7440-50-8	Copper	13.1	1		P
7439-89-6	Iron	25600	.		P
7439-92-1	Lead	46.6			P
7439-95-4	Magnesium	254	B		P
7439-96-5	Manganese	201			P
7439-97-6	Mercury	0.46			CV
7440-02-0	Nickel	2.2	В		P
7440-09-7	Potassium	1930			P
7782-49-2	Selenium	0.81		N	P
7440-22-4	Silver	0.23	טן		P
7440-23-5	Sodium	130	B		P
7440-28-0	Thallium	0.87	В		P
7440-62-2	Vanadium	5.6		1	P
7440-66-6	Zinc	45.1			P
57-12-5	Cyanide	0.55	שן	1	AS

Color Bef	ore: br	own	Clarity	Before:		Texture:	medium
Color Aft	er: <u>pa</u>	le yellow	Clarity	After:	clear	Artifacts:	
Comments:							

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS090.5

Lab Name:	STL BURLING	ON		Contract:	23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.:	IDS001
Matrix (soi	1/water):	SOIL		Lab	Sample ID:	535893	
Level (low/	med): LOW			Dat	e Received:	07/26/03	

% Solids: 93.4

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1920			P
7440-36-0	Antimony	2.3	B	и	P
7440-38-2	Arsenic	43.8		1	P
7440-39-3	Barium	573			P
7440-41-7	Beryllium	0.11	В		P
7440-43-9	Cadmium	0.029	שן		P
7440-70-2	Calcium	8400			P
7440-47-3	Chromium	1.8		1	P
7440-48-4	Cobalt	4.1	В		P
7440-50-8	Copper	26.0	1		P
7439-89-6	Iron	33900			P
7439-92-1	Lead	21.1			P
7439-95-4	Magnesium	294	B		P
7439-96-5	Manganese	115			P
7439-97-6	Mercury	0.28			CV
7440-02-0	Nickel	4.4			P
7440-09-7	Potassium	2100			P
7782-49-2	Selenium	2.1		N	P
7440-22-4	Silver	0.095	В		P
7440-23-5	Sodium	148	В		P
7440-28-0	Thallium	1.9			P
7440-62-2	Vanadium	5.6			P
7440-66-6	Zinc	32.1			P
57-12-5	Cyanide	0.49	U		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					
-					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

DOLWPSSS1	70.5	

Lab Name:	STL BURLINGTO	N		Contract:	23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.:	IDS001
Matrix (so	il/water): SC	OIL		Lab	Sample ID:	535900	
Level (low,	med): <u>LOW</u>			Dat	e Received:	07/26/03	

% Solids: 89.8

CAS No.	Analyte	Concentration	С	Ω	М
7429-90-5	Aluminum	2050			P
7440-36-0	Antimony	4.1	В	N	P
7440-38-2	Arsenic	137		1	P
7440-39-3	Barium	590			P
7440-41-7	Beryllium	0.061	В		P
7440-43-9	Cadmium	0.031	טן	1	P
7440-70-2	Calcium	671	1		P
7440-47-3	Chromium	1.1		1	P
7440-48-4	Cobalt	2.4	В	1	P
7440-50-8	Copper	24.7			P
7439-89-6	Iron	17900			P
7439-92-1	Lead	10.9			P
7439-95-4	Magnesium	214	В		P
7439-96-5	Manganese	44.5	-		P
7439-97-6	Mercury	1.0	1		cv
7440-02-0	Nickel	5.3			P
7440-09-7	Potassium	1260			P
7782-49-2	Selenium	1.8		N	P
7440-22-4	Silver	0.093	שן	1	P
7440-23-5	Sodium	116	В		P
7440-28-0	Thallium	0.83	В		P
7440-62-2	Vanadium	8.4			P
7440-66-6	Zinc	22.0			P
57-12-5	Cyanide	0.53	ט		AS

Color	Before:	brown	Clarity	Before:		Texture:	medium
Color	After:	yellow	Clarity	After:	clear	Artifacts:	
Commer	nts:						
	_						

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS210.5

Lab Name:	STL BURLINGTON	Contract:	23046	

Matrix (soil/water): SOIL Lab Sample ID: 535912

Level (low/med): LOW____ Date Received: 07/26/03

% Solids: 95.4

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3140			P
7440-36-0	Antimony	6.5	1	N	P
7440-38-2	Arsenic	961		1	P
7440-39-3	Barium	26.1	1	İ	P
7440-41-7	Beryllium	0.50		1	P
7440-43-9	Cadmium	0.057	טן		P
7440-70-2	Calcium	44700	1	1	P
7440-47-3	Chromium	0.81	B	l	P
7440-48-4	Cobalt	7.4	T		P
7440-50-8	Copper	23.6		1	P
7439-89-6	Iron	44700			P
7439-92-1	Lead	11.5	1		P
7439-95-4	Magnesium	14300	İ	1	P
7439-96-5	Manganese	2740			P
7439-97-6	Mercury	2.0			CV
7440-02-0	Nickel	5.4	T	1	P
7440-09-7	Potassium	1730			P
7782-49-2	Selenium	0.32	U	И	P
7440-22-4	Silver	0.21	U		P
7440-23-5	Sodium	61.4	В	i	P
7440-28-0	Thallium	0.54	ע		P
7440-62-2	Vanadium	15.2			P
7440-66-6	Zinc	87.7			P
57-12-5	Cyanide	0.49	טן		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:			·		

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSUS023.5	5

Lab Name:	STL BURLINGTO	ON		Contract:	23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.:	IDS001
Matrix (so	il/water): S	OIL		Lab	Sample ID:	535911	·
Level (low	/med): LOW			Dat	e Received:	07/26/03	

% Solids: 87.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	10200	1		P
7440-36-0	Antimony	1.9	В	N	P
7440-38-2	Arsenic	49.5	I]	P
7440-39-3	Barium	438	1]	P
7440-41-7	Beryllium	0.69		1	P
7440-43-9	Cadmium	9.0			P
7440-70-2	Calcium	3000			P
7440-47-3	Chromium	5.1		1	P
7440-48-4	Cobalt	13.1			P
7440-50-8	Copper	33.3	<u> </u>		P
7439-89-6	Iron	31700		1	P
7439-92-1	Lead	102		1	P
7439-95-4	Magnesium	1780			P
7439-96-5	Manganese	1490		ļ	P
7439~97-6	Mercury	0.37		1	CV
7440-02-0	Nickel	16.9			P
7440-09-7	Potassium	2050			P
7782-49-2	Selenium	0.37	שן	N	P
7440-22-4	Silver	0.24	Ιū		P
7440-23-5	Sodium	109	В		P
7440-28-0	Thallium	0.62	U]	P
7440-62-2	Vanadium	24.7			P
7440-66-6	Zinc	1130		1	P
57-12-5	Cyanide	0.46	ען	1	AS

Color	Before:	brown	Clarity Before:		Texture:	medium
Color	After:	pale yellow	Clarity After:	clear	Artifacts:	
Commer	nts:					
	_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSU	s033.5	

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001
Matrix (so	11/water): SOIL	Lab Sample ID:	535894
Level (low,	med): LOW	Date Received:	07/26/03

% Solids: 86.9

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1740	1		P
7440-36-0	Antimony	2.3	В	N	P
7440-38-2	Arsenic	37.3			P
7440-39-3	Barium	361			P
7440-41-7	Beryllium	0.042	В		P
7440-43-9	Cadmium	0.030	ען		P
7440-70-2	Calcium	24600		•	P
7440-47-3	Chromium	2.3	1	l	P
7440-48-4	Cobalt	2.6	В		P
7440-50-8	Copper	10.5			P
7439-89-6	Iron	42300			P
7439-92-1	Lead	11.5		ļ	P
7439-95-4	Magnesium	292	В		P
7439-96-5	Manganese	53.5	1		P
7439-97-6	Mercury	0.44			CV
7440-02-0	Nickel	3.0	В		P
7440-09-7	Potassium	1760			P
7782-49-2	Selenium	2.8		N	P
7440-22-4	Silver	0.089	ט		P
7440-23-5	Sodium	181	В		P
7440-28-0	Thallium	2.2			P
7440-62-2	Vanadium	10.1			P
7440-66-6	Zinc	30.5			P
57-12-5	Cyanide	0.58	שן		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSUS0	41.0

Lab Name:	STL BURLINGTO	N		Contract	:: <u>2</u> :	3046		
Lab Code:	STLVT	Case No.:	23046	sas n	lo.:		SDG No.:	<u>IDS001</u>
Matrix (so	il/water): SO	IL			Lab 8	Sample ID:	535896	
Level (low,	/med): <u>LOW</u>			:	Date	Received:	07/26/03	

% Solids: 92.7

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	1180			P
7440-36-0	Antimony	1.7	В	N	P
7440-38-2	Arsenic	42.2			P
7440-39-3	Barium	391			P
7440-41-7	Beryllium	0.019	ש		P
7440-43-9	Cadmium	0.74			P
7440-70-2	Calcium	1870			P
7440-47-3	Chromium	0.29	В		P
7440-48-4	Cobalt	0.23	В		P
7440-50-8	Copper	3.7			P
7439-89-6	Iron	3690		İ	P
7439-92-1	Lead	452	1		P
7439-95-4	Magnesium	94.4	В	l	P
7439-96-5	Manganese	19.8			P
7439-97-6	Mercury	3.3			cv
7440-02-0	Nickel	0.19	טן		P
7440-09-7	Potassium	1010	1		P
7782-49-2	Selenium	0.36	В	N	P
7440-22-4	Silver	1.7		1	P
7440-23-5	Sodium	52.9	В	1	P
7440-28-0	Thallium	0.27	U		P
7440-62-2	Vanadium	0.98	В	1	P
7440-66-6	Zinc	83.1			P
57-12-5	Cyanide	0.50	שן	1	AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSUS18100	
TDOTMESOSTOTOO	

Lab Name: STL BURLINGTON	Contract:	23046	
Lab Code: STLVT Case No.	: 23046 SAS No.:	SDG N	o.: <u>IDS001</u>
Matrix (soil/water): SOIL	Lab	Sample ID: 53590	5
Level (low/med): LOW	Dat	e Received: 07/26	/03

% Solids: 87.9

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	3510		T	P
7440-36-0	Antimony	3.0	B	И	P
7440-38-2	Arsenic	184			P
7440-39-3	Barium	447			P
7440-41-7	Beryllium	0.23	В	<u> </u>	P
7440-43-9	Cadmium	0.034	טן		P
7440-70-2	Calcium	5500		l	P
7440-47-3	Chromium	1.7			P
7440-48-4	Cobalt	2.9	В		P
7440-50-8	Copper	15.9	Ī		P
7439-89-6	Iron	32600			P
7439-92-1	Lead	23.1	1	1	P
7439-95-4	Magnesium	356	В		P
7439-96-5	Manganese	89.0			P
7439-97-6	Mercury	1.3			CV
7440-02-0	Nickel	2.6	B		P
7440-09-7	Potassium	2830	T		P
7782-49-2	Selenium	2.6	1	N	P
7440-22-4	Silver	0.16	В	1	P
7440-23-5	Sodium	253	B		P
7440-28-0	Thallium	3.0			P
7440-62-2	Vanadium	28.2			P
7440-66-6	Zinc	80.6		1	P
57-12-5	Cyanide	0.53	שן		AS

Color Before:	brown	Clarity	Before:		Texture:	medium
Color After:	yellow	Clarity	After:	clear	Artifacts:	
Comments:						
·						

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSU	S185	. 5	

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	<u>STLVT</u> Case No.: <u>23046</u>	SAS No.:	SDG No.: IDS001
Matrix (so	il/water): SOIL	Lab Sample ID:	535901
Level (low	/med): LOW	Date Received:	07/26/03

% Solids: 90.9

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	4020			P
7440-36-0	Antimony	2.5	В	и	P
7440-38-2	Arsenic	151		ŀ	P
7440-39-3	Barium	178		ŀ	P
7440-41-7	Beryllium	0.080	В		P
7440-43-9	Cadmium	0.031	U	l	P
7440-70-2	Calcium	4400			P
7440-47-3	Chromium	1.4		l	P
7440-48-4	Cobalt	2.9	В		P
7440-50-8	Copper	13.7		1	P
7439-89-6	Iron	20400		l	P
7439-92-1	Lead	21.8			P
7439-95-4	Magnesium	376	В]	P
7439-96-5	Manganese	84.3		1	P
7439-97-6	Mercury	1.3			CV
7440-02-0	Nickel	2.2	B	İ	P
7440-09-7	Potassium	2470			P
7782-49-2	Selenium	2.9		N	P
7440-22-4	Silver	0.19	B		P
7440-23-5	Sodium	348	В		P
7440-28-0	Thallium	2.0			P
7440-62-2	Vanadium	15.4			P
7440-66-6	Zinc	25.7]	P
57-12-5	Cyanide	0.54	ĺυ		AS

Color Before:	brown	Clarity Before:		Texture:	medium
Color After:	yellow	Clarity After:	clear	Artifacts:	
Comments: -					
-					

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL BURLIN	ngton		Contract: 23046	
Lab	Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Cyanide	120.0	117.46 97.9	150.0	140.94	94.0	143.6	57 95.8	3 AS

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL	BURLINGTON	Contract:	23046

Lab Code: STLVT Case No.: 23046 SAS No.:

SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Cyanide			150.0	142.40	94.9	142.7	95.2	AS

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL	BURLINGTON	Contract:	23046

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Cyanide	120.0	129.20 107.7	150.0	148.90	99.3	147.6	0 98.4	AS

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGT	ON	•	_Contract: 23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDS001	
Initial C	alibration Sou	rce: <u>Inorga</u>	nic Vent	ures/Fisher		
Continuin	g Calibration	Source: SPE	X/Fisher			

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Cyanide			150.0	149.50	99.7	151.	L7 100.	8 AS

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Barium	500.0	479.10 95.8	200.0	200.80	100.4	199.10	99.6	P

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	. Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Barium			200.0	205.30	102.6	204.7	0 102.4	P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL BURLINGTON	Contract:	23046

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Barium	[]		200.0	209.50	104.8	212.1	0 106.0	P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibration	n		Continuing	Calibr	ation		
Analyte	True	Found 5	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum	26000.0	26270.00	101.0	30200.0	30480.00	100.9	30580.00	101.3	P
Antimony	250.0	257.90	103.2	300.0	315.70	105.2	313.50	104.5	Р
Arsenic	250.0	252.30	100.9	100.0	102.40	102.4	102.70	102.7	P
Barium	500.0	494.30	98.9	200.0	200.20	100.1	200.00	100.0	Р
Beryllium	500.0	504.30	100.9	100.0	99.84	99.8	99.80	99.8	Р
Cadmium	500.0	491.80	98.4	100.0	98.33	98.3	97.81	97.8	Р
Calcium	25000.0	25220.00	100.9	30200.0	30320.00	100.4	30200.00	100.0	Р
Chromium	500.0	498.30	99.7	200.0	198.20	99.1	198.20	99.1	Р
Cobalt	500.0	491.60	98.3	200.0	198.50	99.2	198.10	99.0	P
Copper	500.0	503.60	100.7	200.0	203.50	101.8	203.00	101.5	Р
Iron	25500.0	26390.00	103.5	30200.0	30630.00	101.4	30730.00	101.8	P
Lead	1000.0	1005.00	100.5	400.0	399.20	99.8	398.90	99.7	Р
Magnesium	25000.0	25370.00	101.5	30200.0	30260.00	100.2	30310.00	100.4	Р
Manganese	500.0	493.30	98.7	200.0	199.00	99.5	198.80	99.4	Р
Nickel	500.0	495.50	99.1	200.0	197.90	99.0	197.70	98.8	Р
Potassium	25000.0	26500.00	106.0	30200.0	31590.00	104.6	31850.00	105.5	P
Selenium	250.0	243.80	97.5	100.0	102.90	102.9	101.30	101.3	P
Silver	500.0	497.20	99.4	100.0	99.74	99.7	100.70	100.7	P
Sodium	25000.0	25090.00	100.4	30200.0	29480.00	97.6	29950.00	99.2	P
Thallium	250.0	239.60	95.8	100.0	101.00	101.0	97.83	97.8	Р
Vanadium	500.0	495.30	99.1	200.0	199.30	99.6	199.20	99.6	Р
Zinc	500.0	501.50	100.3	200.0	202.50	101.2	202.60	101.3	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial C	alibration	on		Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum				30200.0	30490.00	101.0	30200.00	100.0	P
Antimony				300.0	313.00	104.3	312.90	104.3	P
Arsenic				100.0	104.90	104.9	101.60	101.6	P
Barium				200.0	200.50	100.2	197.40	98.7	Р
Beryllium				100.0	100.20	100.2	98.56	98.6	Р
Cadmium				100.0	97.47	97.5	96.06	96.1	P
Calcium				30200.0	30480.00	100.9	30000.00	99.3	Р
Chromium				200.0	198.10	99.0	195.40	97.7	P
Cobalt				200.0	197.90	99.0	196.60	98.3	P
Copper				200.0	202.60	101.3	200.30	100.2	P
Iron				30200.0	30790.00	102.0	30430.00	100.8	Р
Lead				400.0	396.10	99.0	395.10	98.8	Р
Magnesium				30200.0	30350.00	100.5	29940.00	99.1	Р
Manganese				200.0	199.20	99.6	196.00	98.0	P
Nickel				200.0	197.20	98.6	195.50	97.8	Р
Potassium				30200.0	31820.00	105.4	31470.00	104.2	₽
Selenium		<u> </u>		100.0	100.60	100.6	100.90	100.9	P
Silver				100.0	100.00	100.0	99.30	99.3	P
Sodium				30200.0	29990.00	99.3	29480.00	97.6	₽
Thallium				100.0	99.05	99.0	99.70	99.7	P
Vanadium				200.0	198.80	99.4	196.80	98.4	P
Zinc				200.0	202.70	101.4	200.20	100.1	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	. Calibratio	n		Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum	26000.0	26540.00	102.1	30200.0	30480.00	100.9	30070.00	99.6	P
Antimony	250.0	257.70	103.1	300.0	308.30	102.8	307.10	102.4	P
Arsenic	250.0	251.60	100.6	100.0	104.10	104.1	101.00	101.0	P
Barium	500.0	496.50	99.3	200.0	199.90	100.0	196.80	98.4	P
Beryllium	500.0	508.90	101.8	100.0	100.70	100.7	99.84	99.8	P
Cadmium	500.0	494.30	98.9	100.0	97.44	97.4	96.19	96.2	P
Calcium	25000.0	25810.00	103.2	30200.0	30700.00	101.7	30340.00	100.5	Р
Chromium	500.0	503.10	100.6	200.0	197.90	99.0	194.70	97.4	P
Cobalt	500.0	493.30	98.7	200.0	197.80	98.9	195.90	98.0	Р
Copper	500.0	503.50	100.7	200.0	201.40	100.7	198.60	99.3	P
Iron	25500.0	27200.00	106.7	30200.0	31660.00	104.8	31690.00	104.9	P
Lead	1000.0	1028.00	102.8	400.0	401.90	100.5	395.50	98.9	P
Magnesium	25000.0	25800.00	103.2	30200.0	30530.00	101.1	30110.00	99.7	P
Manganese	500.0	497.20	99.4	200.0	198.90	99.4	196.40	98.2	P
Nickel	500.0	501.50	100.3	200.0	198.30	99.2	195.80	97.9	P
Potassium	25000.0	26350.00	105.4	30200.0	31190.00	103.3	30720.00	101.7	P
Selenium	250.0	251.90	100.8	100.0	105.50	105.5	101.70	101.7	P
Silver	500.0	497.80	99.6	100.0	97.51	97.5	96.96	97.0	P
Sodium	25000.0	25380.00	101.5	30200.0	30420.00	100.7	29760.00	98.5	P
Thallium	250.0	249.40	99.8	100.0	102.40	102.4	102.90	102.9	P
Vanadium	500.0	499.70	99.9	200.0	197.10	98.6	193.90	97.0	Р
Zinc	500.0	504.10	100.8	200.0	201.60	100.8	200.20	100.1	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial	Calibratio	on	(Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum			<u> </u>	30200.0	30900.00	102.3	31770.00	105.2	P
Antimony				300.0	318.20	106.1	324.60	108.2	Р
Arsenic				100.0	102.90	102.9	105.80	105.8	Р
Barium	·			200.0	202.60	101.3	210.90	105.4	Р
Beryllium				100.0	102.20	102.2	104.70	104.7	P
Cadmium				100.0	98.88	98.9	100.70	100.7	P
Calcium				30200.0	31110.00	103.0	31880.00	105.6	P
Chromium				200.0	200.60	100.3	204.30	102.2	P
Cobalt				200.0	197.70	98.8	202.00	101.0	Р
Copper				200.0	204.80	102.4	209.50	104.8	P
Iron	İ			30200.0	32720.00	108.3	33640.00	111.4	Р
Lead	ļ			400.0	403.80	101.0	412.50	103.1	P
Magnesium				30200.0	30830.00	102.1	31520.00	104.4	P
Manganese				200.0	203.90	102.0	210.20	105.1	P
Nickel				200.0	201.40	100.7	205.80	102.9	Р
Potassium				30200.0	31390.00	103.9	32130.00	106.4	P
Selenium				100.0	101.40	101.4	105.90	105.9	Р
Silver	į			100.0	99.94	99.9	101.50	101.5	P
Sodium				30200.0	30280.00	100.3	31090.00	102.9	P
Thallium				100.0	105.20	105.2	104.10	104.1	P
Vanadium				200.0	200.20	100.1	204.00	102.0	P
Zinc				200.0	206.40	103.2	210.60	105.3	₽

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name: _	STL BURLINGTO	N		Cc	ontract: 23046		
Lab	Code:	STLVT	Case	No.:	23046	SAS No.:	SDG No.:	IDS001
Init	ial Ca	libration Sou	rce:	Inorgai	nic Venture	s/Fisher		

Continuing Calibration Source: SPEX/Fisher

	Initial Ca	alibratio	on	(Continuing	Calibra	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	М
Aluminum				30200.0	31130.00	103.1			P
Antimony	1			300.0	315.30	105.1			P
Arsenic				100.0	103.40	103.4			P
Barium	1			200.0	204.40	102.2			P
Beryllium	1			100.0	102.50	102.5			P
Cadmium				100.0	98.95	99.0			P
Calcium				30200.0	31290.00	103.6			P
Chromium				200.0	199.80	99.9			P
Cobalt				200.0	197.10	98.6			P
Copper			i -	200.0	205.10	102.6			P
Iron			1	30200.0	32820.00	108.7			P
Lead			Ì	400.0	403.00	100.8			P
Magnesium		-		30200.0	31000.00	102.6			P
Manganese				200.0	203.00	101.5			P
Nickel				200.0	201.00	100.5			P
Potassium				30200.0	31510.00	104.3			P
Selenium	i			100.0	102.00	102.0			P
Silver			Ī	100.0	99.09	99.1			P
Sodium			i	30200.0	30320.00	100.4			P
Thallium				100.0	101.80	101.8			₽
Vanadium	i		i	200.0	199.80				P
Zinc	1		İ	200.0	204.70	102.4			P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab 1	Name:	STL	BURLINGTON		Contract:	23046	
-------	-------	-----	------------	--	-----------	-------	--

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher_____

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Manganese	500.0	494.50 98.9	200.0	206.50	103.2	209.0	0 104.5	P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name:	STL BURLINGTO	N		Contract:	23046			
Lab	Code:	STLVT	Case No.:	23046	SAS No.	.:	SDG No.:	IDS001	

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initia	al Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Manganese			200.0	202.30	101.2			P

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON ___Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial C	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	3.0	2.72 90.7	5.0	4.85	97.0	4.46	89.2	CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: _	STL BURLINGTON		Contract:	23046	
Lab Code:	STLVT C	ase No.: 2	3046 SAS No	.:SDG	No.: IDS001
Initial Ca	alibration Source	e: <u>Inorgani</u>	ic Ventures/Fishe	r	
Continuing	g Calibration Sc	urce: SPEX/	/Fisher		

Concentration Units: ug/L

	Initial	Calibration	Co	ontinuing	Calibra	ation		
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury			5.0	4.76	95.2			cv

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

	Initial (Calibration	Co	ntinuing	Calibra	ation		
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Mercury	3.0	2.73 91.0	5.0	4.93	98.6	4.7	7 95.4	ı cv

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial C	alibration	Со	ntinuing	Calibra	ation		
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Mercury	3.0	2.74 91.3	5.0	4.92	98.4	5.0	4 100.8	CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name	: STL BURLI	INGTON		Contract: 23046			
Lab Code	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDS001	
Initial	Calibration	Source: Inorga	nic Vent	tures/Fisher			

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initia	Calibration	Со	ntinuing	Calibra	ation		
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury			5.0	5.24	104.8	5.3	30 106.0	CV

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLINGTO	DN	Contract: 230	046			
Lab Code:	STLVT Ca	ase No.: 23046	SAS No.:		SDG No.:	IDS001	_
AA CRDL St	andard Source	Inorganic Ve	ntures				
ICP CRDL S	Standard Source	e: Inorganic Ve	ntures				
		Со	ncentration U	nits: ug/L			

					CRDL Stand	dard f	or ICP	
				In	itial		Fina	1
Analyte	True	Found	%R	True	·· Found	%R	Found	%R
Barium				400.	0 390.60	97.6	412.50	103.1

2B-IN CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLINGTON	Contract: 23046
-----------	----------------	-----------------

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

						CRDL Star	ndard	for ICP	
					Init	tial		Fina	l.
Analyte	True	Found	%R		True	Found	· · %R	Found	%R
Aluminum					400.0	448.10	112.0		
Antimony					120.0	129.20	107.7		
Arsenic					20.0	22.07	110.4	23.22	116.1
Barium					400.0	396.90	99.2	395.80	99.0
Beryllium				\Box	10.0	10.34	103.4	10.44	104.4
Cadmium				\sqcap	10.0				102.1
Calcium					10000.0	10470.00	104.7	10530.00	105.3
Chromium					20.0	21.45	107.2	21.86	109.3
Cobalt					100.0	97.89	97.9	98.37	98.4
Copper					50.0	51.84	103.7	51.42	102.8
Iron					200.0	233.80	116.9	265.50	132.8
Lead	ŀ				6.0	6.89	114.8	7.38	123.0
Magnesium		-			10000.0	10340.00	103.4	10390.00	103.9
Manganese					30.0	30.32	101.1	30.36	101.2
Nickel					80.0	80.39	100.5	80.86	101.1
Potassium					10000.0	11030.00	110.3	11020.00	110.2
Selenium			-		10.0	7.75	77.5	8.13	81.3
Silver					20.0	19.86	99.3	20.31	101.6
Sodium					10000.0	10220.00	102.2	10120.00	101.2
Thallium				T	20.0	17.74	88.7	21.02	105.1
Vanadium	i				100.0	100.40	100.4	100.30	100.3
Zinc				一	40.0	41.43	103.6	41.58	104.0

2B-IN CRDL STANDARD FOR AA AND ICP

Lab	Name:	STL BURLINGTON	Contract: 23046

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

	T			— <u>T</u> T					
						CRDL Stan	dard		
					Init	ial		Fina	
Analyte	True	Found	%R		True	Found	%R	Found	%R
Aluminum	Ī				400.0				
Antimony					120.0	130.60	108.8		-
Arsenic	İ				20.0	21.75	108.8		100.8
Barium	i				400.0	393.40	98.4	392.90	98.2
Beryllium					10.0	10.30	103.0	10.46	104.6
Cadmium					10.0	10.52			103.4
Calcium	i				10000.0	10650.00	106.5	10760.00	107.6
Chromium					20.0	20.85	104.2	20.71	103.6
Cobalt				П	100.0	97.47	97.5	95.09	95.1
Copper					50.0	50.99	102.0	51.22	102.4
Iron	İ				200.0	301.80	150.9	359.10	179.6
Lead					6.0	5.09	84.8	4.58	76.3
Magnesium					10000.0	10500.00	105.0	10570.00	105.7
Manganese					30.0	30.33	101.1	30.31	101.0
Nickel					80.0	80.81	101.0	79.88	99.8
Potassium					10000.0	10740.00	107.4	10600.00	106.0
Selenium			-		10.0	9.98	99.8	9.73	97.3
Silver					20.0	20.06	100.3	19.21	96.0
Sodium					10000.0	10520.00	105.2	10360.00	103.6
Thallium					20.0	21.82	109.1	22.69	113.4
Vanadium	ĺ				100.0	99.98	100.0	98.21	98.2
Zinc		:			40.0	41.87	104.7	41.98	105.0

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: <u>Inorganic Ventures</u>

Concentration Units: ug/L

					CRDL Standard for ICP Initial Final						
Analyte	True	Found	%R	TI	rue	Found	%R	Found	%R·		
Manganese				li	30.0	29.29	97.6	30.87	102.9		

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				Init	CRDL Standard for I				
Analyte	True	Found	%R	True	Found %R	Found	%R		
Mercury	0.2	0.14	70.0						

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BUR	LINGTON	Contract: 230	046			
Lab Code: STLVT	Case No.: 23046	_ SAS No.:		SDG No.:	IDS001	
AA CRDL Standard S	Source: Inorganic V	Ventures				
ICP CRDL Standard	Source: Inorganic V	entures				

Concentration Units: ug/L

					CRDL Standard	for ICP	
				Init	tial	Fina	1
Analyte	True	Found	%R	True	Found %R	Found	%R
Mercury	0.2	0.17	85.0				}

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON	Contract: 23046		
Lab Code: <u>STLVT</u> Case	No.: 23046 SAS No.:	SDG No.: IDS001	
AA CRDL Standard Source:	Inorganic Ventures		
ICP CRDL Standard Source:	Inorganic Ventures		
	Concentration Units: ug/L		

				Init	CRDL Stand	lard	for ICP Final		
Analyte	True	Found	₹R	True	Found	₹R	Found	%R	
Mercury	0.2	0.26	130.0						

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank			Cont	Preparation Blank					
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Cyanide	10.	. ס ט	10.	. 0 ^U	10	ןט ן ס.	10.	0 υ	0.495 U	AS

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

Preparation Blank Matrix (soil/water): WATER_____

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank (ug/L) C	Continuing Calibration Blank (ug/L)						Preparation Blank			
Analyte	(ug/L)	С	1	C	2	С	3	С		С	м
Cyanide			10.	0 0							AS

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank				inuing Blank		Preparation Blank			
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Cyanide	10.	0 0	10.	0 0	10.	0 0	10.	ס ט	0.467 U	AS

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank				tinuing Blank	Calibra (ug/L)	ation		Preparation		
Analyte	(ug/L)	С	1	С	2	С	3	С		C	М
Cyanide			10.	0 0							AS

3

BLANKS

Lab Name: STL BUR	RLINGTON	Contract: 23046		
Lab Code: STLVT	Case No.: 23046	SAS No.:	SDG No.:	IDS001
Preparation Blank	k Matrix (soil/water): WATER			
Preparation Blan	k Concentration Units (ug/L o	or mg/kg): UG/L		

	Initial Calib. Blank				inuing Blank	Calibra (ug/L)	ation		Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Barium	7.	. 3 U	7.	3 U	7	. 3 U	7.	3 U		P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank				tinuing Blank	Calibra (ug/L)	ation		Preparation Blank	
Analyte	(ug/L)	C	. 1	С	2	С	3	С	С	М
Barium			7.	3 0	7.	.3 U	7.	3 U		P

3 **BLANKS**

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDS001</u>

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

 Analyte	Initial Calib. Blank (ug/L)	С	1	C	ontinuing C Blank (u			C	Preparation Blank	С	м
Aluminum	-96.2	В	-85.9	В	-91.8		-101.6	ĪВ	-9.763	В	P
Antimony	4.7	Ū	4.7		4.7	ט	4.7	ับ	!	U	P
Arsenic	4.8	U	4.8		4.8	ט	4.8	υ	 	U	P
Barium	5.9	U	5.9		5.9	ש	5.9	U	 	U	P
Beryllium	0.2	В	0.2	U	0.2	ַ	0.2	U		U	P
Cadmium	0.6	Ū	0.6	U	0.6	ט	0.6	ับ	H	U	P
Calcium	182.1	Ū	182.1		182.1	ט	182.1	Ū	!:	U	P
Chromium	1.4	U	1.4	ָט	1.4	U	1.4	Ū	 	U	P
Cobalt	2.0	U	2.0	U	2.0	U	2.0	U		U	P
Copper	2.4	U	2.4	U	2.4	ַ	2.4	U	0.240	U	P
Iron	-48.3	В	-44.0	В	-45.0	В	33.3	Ū	-5.182	В	P
Lead	1.3	Ū	1.3	ַ	1.3	U	1.9	В		В	P
Magnesium	178.3	U	178.3	י ט	178.3	Ū	178.3	U	17.830	U	P
Manganese	0.7	υ	0.7	ַ	0.7	U	0.7	U	 	Ü	P
Nickel	2.1	U	2.1	י די	2.1	Ū	2.1	U	0.210	Ū	P
Potassium	393.0	U	393.0	ָ ט	393.0	U	393.0	U	39.300	Ū	P
Selenium	3.4	U	3.4	י די	3.4	U	3.4	U	0.340	บ	P
Silver	2.2	Ū	2.2	ָ ט	2.2	U	2.2	υ	0.220	บ	P
Sodium	472.7	Ū	472.7	ן ט	472.7	ַ	472.7	U	83.900	В	P
Thallium	5.7	U	5.7	ט	5.7	U	5.7	U	0.570	U	P
Vanadium	2.0	U	2.0	ן ט	2.0	ט	2.0	U	0.200	U	P
Zinc	1.0	U	1.0	<u>ט</u>	1.0	ט	1.0	บ	0.288	В	P

3

BLANKS

_____ Contract: 23046 Lab Name: STL BURLINGTON

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calib. Blank		1		tinuing Blank	(ug/L)	ation		Preparation Blank		м
	(ug/L)	С	1	С	2	С	<u> </u>	<u>C</u>	<u> </u>	С	
Aluminum	<u> </u>		-90.0								P
Antimony		<u> </u>	4.7								P
Arsenic			4.8	ן ש							P
Barium			5.9	ן ט							P
Beryllium			0.2	U							P
Cadmium			0.6	שן							P
Calcium			182.1	וטן		_ I I _					P
Chromium			1.4	וטן		Ī					P
Cobalt			2.0								P
Copper			2.4	ש							P
Iron			33.3								P
Lead			1.3	ט		İ					P
Magnesium			178.3						1		P
Manganese			0.7	U							P
Nickel	İ		2.1	וטן							P
Potassium			393.0		-						P
Selenium		Ti	3.4								P
Silver	i	1	2.2			i i					P
Sodium	1	TŤ	472.7		-	- i i					P
Thallium	İ	11	5.7			11		1			P
Vanadium	 	+ +	2.0				-	İ	ĺ		P
Zinc	 	- - 	1.0			11			İ		P

3

BLANKS

_____ Contract: 23046 Lab Name: STL BURLINGTON

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

Analyte	Initial Calib. Blank (ug/L)	 C	1	C	ontinuing Co Blank (u	g/L			Preparation Blank	-	м
Aluminum	-92.9					C		C	<u> </u>	C	<u></u> ,
Antimony	3.8	<u> </u>	-112.9					В	-9.913	B	P
Arcimony	2.4		3.8		3.8	U	3.8	U	0.968	В	P
			3.4		2.4		2.4	ָ טַ	0.244	В	P
Barium	7.3	<u> </u>	7.3		7.3	ш	7.3	ט	0.730	U	P
Beryllium	0.2		0.2	Ū	0.2	U	-0.5	В	-0.074	В	P
Cadmium	0.3	U	0.3	U	0.3	ַ	0.3	ט	0.030	U	P
Calcium	223.2	U	223.2	ן ט	223.2	Ŭ	223.2	U	22.320	Ū	P
Chromium	0.6	В	0.6	ע	0.6	U	0.6	Ū	0.104	В	P
Cobalt	1.8	Ū	1.8	U	1.8	ט	1.8	U	0.180	U	P
Copper	1.4	Ū	1.4	Ū	1.4	ַ	1.4	В	0.173	В	P
Iron	-44.6	В	-38.9	В	-28.8	В	16.8	Ū	-3.973	В	P
Lead	-2.1	В	1.5	U	1.5	U	1.5	U	0.150	υ	P
Magnesium	181.7	U	181.7	ַ	181.7	U	181.7	U	18.170	U	P
Manganese	0.7	U			0.7	U	0.9	В	0.070	U	P
Nickel	2.0	υ	2.0	U	2.0	ט	2.0	υ	-0.295	В	P
Potassium	250.0	U	250.0	U	250.0	ַ	250.0	U	25.000	U	P
Selenium	-3.1	В	1.7	ָּט	1.7	U	-1.9	В	0.170	U	P
Silver	0.9	Ū	-0.9	В	0.9	ט	0.9	U	-0.097	В	P
Sodium	392.7	В	372.0	В	313.2	В	451.8	В	74.910	В	P
Thallium	7.0	В		В	6.7	В	3.2	В	-0.574	В	P
Vanadium	2.2	Ū	2.2	ַ	2.2	ט	2.2	υ	0.220	U	P
Zinc	5.7	U	5.7	ַט	5.7	미	5.7	Ū	0.570	U	P

3 BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Co	ntinuing Ca Blank (ug		tion		Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	С		С	М
Aluminum			-106.9	В	-106.1						P
Antimony			3.8	ַ	3.8	U		ļ			P
Arsenic			2.4	ט	2.4	Ŭ					P
Barium			7.3	ן ט	7.3						P
Beryllium			0.2	ט	-0.2	В		<u> </u>			P
Cadmium			0.3	וט	0.3						P
Calcium			223.2	וט	223.2	Ū					P
Chromium			0.6	ט	0.6	ט					P
Cobalt			1.8	ט	1.8	U					P
Copper			1.4	וט	1.5	В					P
Iron			16.8	וט	-41.3	В					P
Lead			1.5	ט	1.5	U					P
Magnesium			181.7		181.7	U					P
Manganese			0.9	В	0.7	ַ		<u> </u>			P
Nickel			2.0	Ū	2.0	Ū					P
Potassium			250.0	ט	250.0	Ŭ	 				P
Selenium	İ		1.7	ַ	-2.5	В					P
Silver			0.9		0.9	ַט					P
Sodium	İ		470.9	B	273.8	В					P
Thallium		i	4.8		2.8	Ū					P
Vanadium	İ		2.2		2.2	U					P
Zinc	<u> </u>		5.7		5.7	וט					P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Cont	tinuing Blank	Calibra (ug/L)	ation		Preparatio	n	
Analyte	(ug/L)	С	1	С	2	С	3	C		С	М
Manganese	1.	9 U	1.	9 U	1	. 9 U	1.	9 ប			P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank				tinuing Blank	Calibra (ug/L)	ation	1	Preparation Blank		
Analyte	(ug/L)	С	1	С	2	С	3	C_		С	М
Mercury	0.	. 1 บ	0.	1 0	0	.1 U	0.	1 U	0.017	U	CV

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank				inuing Blank	Calibra (ug/L)	ation		Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	М
Mercury	0.	1 U	0.	1 0	0	וש 1		l		CV

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: ____ SDG No.: ____ IDS001

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank				tinuing Blank	Calibra (ug/L)	ation	!	Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	С	С	M
Mercury	0.	1 U	0.	1 0	0	.1 U	0.	1 U	0.017 U	CV

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank		Continuing Calibration Blank (ug/L)						Preparation Blank		
Analyte	(ug/L)	c	1	С	2	С	3	С	C	2	М
Mercury			0.	. 1 ೮							CV

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON C	Contract: 23046
	No.: SDG No.: IDS001
ICP ID Number: <u>TJA ICAP 6</u>	ICS Source: Inorganic Ventures
Concentrati	on Units: ug/L

	True		Initial	. Found	Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB	%R	Sol.A	Sol.AB	%R
Barium	0	466	1	507.0	108.8	2	528.7	113.5

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDS001</u>

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures

	Tr	ıe	Init	ial Found		Final Found					
Analyte	Sol.A	Sol.AB	Sol.A	Sol.A	3 %R	Sol.A	Sol.AB	%R			
Aluminum	500000	477680	509600	513000.0	107.4	513500	514100.0	107.6			
Antimony	0	575	-3	630.2	109.6	-1	632.5	110.0			
Arsenic	0	97	8	104.0	107.2	5	104.2	107.4			
Barium	0	464	2	496.8	107.1	3	496.6	107.0			
Beryllium	0	444	0	472.8	106.5	0	475.3	107.0			
Cadmium	0	874	-1	925.2	105.9	-1	923.2	105.6			
Calcium	500000	476380	491400	499900.0	104.9	493300	501100.0	105.2			
Chromium	0	451	4	478.5	106.1	4	480.2	106.5			
Cobalt	0	434	-1	456.9	105.3	-1	458.8	105.7			
Copper	0	482	4	516.1	107.1	3	515.6	107.0			
Iron	200000	192500	204000	202500.0	105.2	205200	203400.0	105.7			
Lead	0	41	-1	44.9	109.5	3	45.0	109.8			
Magnesium	500000	524140	540200	548000.0	104.6	542100	550100.0	105.0			
Manganese	0	451	1	479.0	106.2	2	479.1	106.2			
Nickel	0	876	1	926.4	105.8	2	930.4	106.2			
Potassium	0	0	-76	-80.5		-86	-85.3				
Selenium	0	41	-7	40.8	99.5	-5	46.2	112.7			
Silver	0	198	1	210.5	106.3	0	211.4	106.8			
Sodium	0	0	-72	-158.7		-48	-225.8				
Thallium	0	83	-7	84.9	102.3	-3	88.5	106.6			
Vanadium	0	464	2	494.5	106.6	2	495.4	106.8			
Zinc	0	951	4	999.3	105.1	4	1001.0	105.3			

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDS001</u>

ICP ID Number: TJA ICAP 6 ICS Source: Inorganic Ventures

Tru	1 e	Init	ial Found		Final Found			
Sol.A	Sol.AB	Sol.A	Sol.A	B %R	Sol.A	Sol.AE	%R	
500000	488880	542500	512600.0	104.9	516700	531700.0	108.8	
0	604	11	622.5	103.1	7	642.2	106.3	
0	98	2	103.2	105.3	3	101.2	103.3	
0	493	2	488.9	99.2	2	508.5	103.1	
0	452	-1	464.8	102.8	0	484.7	107.2	
0	922	7	920.0	99.8	7	946.3	102.6	
500000	459460	494000	470700.0	102.4	477000	487800.0	106.2	
0	471	5	469.4	99.7	5	483.5	102.7	
0	465	9	456.4	98.2	9	465.9	100.2	
0	526	4	514.4	97.8	4	532.2	101.2	
200000	191660	220000	205700.0	107.3	216700	217900.0	113.7	
0	48	7	49.3	102.7	6	55.0	114.6	
500000	546140	581600	555500.0	101.7	558200	574200.0	105.1	
0	468	-1	468.0	100.0	0	486.7	104.0	
0	926	12	922.4	99.6	12	950.5	102.6	
0	0	148	-52.9		83	54.9		
0	46	3	47.5	103.3	5	54.2	117.8	
0	215	0	207.3	96.4	0	212.4	98.8	
0	0	188	30.3		-120	-112.8		
0	97	16	104.9	108.1	11	108.7	112.1	
0	477	-4	473.4	99.2	-4	491.1	103.0	
0	901	8	929.8	103.2	9	969.4	107.6	
	Sol.A 500000 0 0 0 500000 0 200000 500000 0 0 0 0 0 0 0 0 0	500000 488880 0 604 0 98 0 493 0 452 0 922 500000 459460 0 471 0 465 0 526 200000 191660 0 48 500000 546140 0 468 0 926 0 0 0 46 0 215 0 0 0 97 0 477	Sol.A Sol.AB Sol.A 500000 488880 542500 0 604 11 0 98 2 0 493 2 0 452 -1 0 922 7 500000 459460 494000 0 471 5 0 465 9 0 526 4 200000 191660 220000 0 48 7 500000 546140 581600 0 468 -1 0 926 12 0 0 148 0 46 3 0 215 0 0 97 16 0 477 -4	Sol.A Sol.AB Sol.A Sol.AI 500000 488880 542500 512600.0 0 604 11 622.5 0 98 2 103.2 0 493 2 488.9 0 452 -1 464.8 0 922 7 920.0 500000 459460 494000 470700.0 0 471 5 469.4 0 465 9 456.4 0 526 4 514.4 200000 191660 220000 205700.0 0 48 7 49.3 500000 546140 581600 555500.0 0 468 -1 468.0 0 926 12 922.4 0 0 148 -52.9 0 46 3 47.5 0 215 0 207.3 0 97	Sol.A Sol.AB Sol.AB Sol.AB %R 500000 488880 542500 512600.0 104.9 0 604 11 622.5 103.1 0 98 2 103.2 105.3 0 493 2 488.9 99.2 0 452 -1 464.8 102.8 0 922 7 920.0 99.8 500000 459460 494000 470700.0 102.4 0 471 5 469.4 99.7 0 465 9 456.4 98.2 0 526 4 514.4 97.8 200000 191660 220000 205700.0 107.3 0 48 7 49.3 102.7 500000 546140 581600 555500.0 101.7 0 468 -1 468.0 100.0 0 926 12 922.4 99.6	Sol.A Sol.AB Sol.A Sol.AB %R Sol.A 500000 488880 542500 512600.0 104.9 516700 0 604 11 622.5 103.1 7 0 98 2 103.2 105.3 3 0 493 2 488.9 99.2 2 0 452 -1 464.8 102.8 0 0 922 7 920.0 99.8 7 500000 459460 494000 470700.0 102.4 477000 0 465 9 456.4 98.2 9 0 465 9 456.4 98.2 9 0 526 4 514.4 97.8 4 200000 191660 220000 205700.0 107.3 216700 0 488 7 49.3 102.7 6 500000 546140 581600 555500.0	Sol.A Sol.AB Sol.A Sol.AB %R Sol.A Sol.AB 500000 488880 542500 512600.0 104.9 516700 531700.0 0 604 11 622.5 103.1 7 642.2 0 98 2 103.2 105.3 3 101.2 0 493 2 488.9 99.2 2 508.5 0 452 -1 464.8 102.8 0 484.7 0 922 7 920.0 99.8 7 946.3 500000 459460 494000 470700.0 102.4 477000 487800.0 0 465 9 456.4 98.2 9 465.9 0 526 4 514.4 97.8 4 532.2 200000 191660 220000 205700.0 107.3 216700 217900.0 0 48 7 49.3 102.7 6	

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046 Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: IDS001 ICP ID Number: TJA ICAP 5 ICS Source: Inorganic Ventures

	True		Initi	al Found	Final Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.AB %R	Sol.A	Sol.AB %R		
Manganese	0	473	23	504.6 106.7	26	523.7 110.7		

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Matrix (soil/water): SOIL

Level (low/med): LOW

% Solids for Sample: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

3 1	Control	Spiked Sample		Sample		Spike			
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	₹R	Q	М
Aluminum		16380.0000		13596.5898		200.00	1391.7		P
Antimony	75 - 125	16.3600		7.9861		50.00	16.7	N	₽
Arsenic		110.3000		106.9370		4.00	84.1		P
Barium	75 - 125	616.8000		423.7994		200.00	96.5		P
Beryllium	75 - 125	5.5880		0.6374		5.00	99.0		P
Cadmium	75 - 125	4.5270		0.0320	υ	5.00	90.5		P
Chromium	75 - 125	26.7600		6.3095		20.00	102.3		₽
Cobalt	75 - 125	58.7700		10.9819		50.00	95.6		P
Copper	75 - 125	53.5600		27.3853		25.00	104.7		P
Iron		31650.0000		32433.3008		100.00	-783.3		P
Lead		17.1100		17.1825		2.00	-3.6		P
Manganese	l l	1463.0000		1410.8860		50.00	104.2		P
Mercury	75 - 125	0.2889		0.1017	l	0.16	117.0		cv
Nickel	75 - 125	62.5500		11.4728		50.00	102.2		P
Selenium	75 - 125	2.4650		2.0224		1.00	44.3	N	P
Silver	75 - 125	4.1310		0.2057	В	5.00	78.5		P
Thallium	75 - 125	7.7450		3.4792		5.00	85.3	L	P
Vanadium	75 - 125	80.3300		30.8751		50.00	98.9		P
Zinc	75 - 125	154.0000		102.4440		50.00	103.1		P
Cyanide	75 - 125	5.4858		0.5034	ט	4.85	113.1		AS

Comments:		

5B

POST DIGEST SPIKE SAMPLE RECOVERY SAMPLE NO.

ID	ΟL	BKS	ss	S0	80	_	5A	
	-			~ ~		•		

Lab Name: S	TL BURLING	TON	Contra	ct: <u>23046</u>		
Lab Code: ST	TLVT	Case No.: 23046	SAS		SDG No.:	IDS001
Matrix (soil	/water):	SOIL		Level (low/	med): LOW	

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Aluminum		126600.00		127400.00		2000.0	-40.0		P
Antimony		549.30		74.83		500.0	94.9		P
Arsenic		1017.00		1002.00		40.0	37.5		P
Barium		5659.00		3971.00		2000.0	84.4		P
Beryllium		51.86		5.97		50.0	91.8		P
Cadmium		40.75		0.30	U	50.0	81.5		P
Chromium		243.00		59.12		200.0	91.9		P
Cobalt		542.70		102.90		500.0	88.0		P
Copper		491.00		256.60		250.0	93.8		P
Iron		298700.00		303900.00		1000.0	-520.0		P
Lead		172.30		161.00		20.0	56.5		P
Manganese		18430.00		13220.00		5000.0	104.2		P
Nickel		557.00		107.50		500.0	89.9		P
Selenium		25.37		18.95		10.0	64.2		P
Silver		27.50		1.93	В	50.0	51.1		P
Thallium		75.28		32.60		50.0	85.4		Р
Vanadium		748.80	*	289.30		500.0	91.9		P
Zinc		1409.00		959.90		500.0	89.8		P
Cyanide		28.40		10.00	ซ	20.0	142.0		AS

Comments:	 	 	 	 _
				 _

DUPLICATES

SAMPLE NO.

IDOLBKSSS080.5D

Lab Name: STL BURLINGTON Contract: 23046

Level (low/med): LOW Matrix (soil/water): SOIL

% Solids for Duplicate: 93.1 % Solids for Sample: 93.7

Concentration Units (ug/L or mg/kg dry weight): MG/KG

_ :	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum		13596.5898		13874.0703		2.0		P
Antimony	6.4	7.9861		7.5208		6.0		P
Arsenic		106.9370		118.6766		10.4		P
Barium		423.7994		466.0619		9.5		P
Beryllium	0.5	0.6374		0.6605		3.6		P
Cadmium		0.0320	U	0.0320	U			P
Calcium		4010.6731		4224.1201		5.2		P
Chromium		6.3095		6.3084		0.0		P
Cobalt	5.3	10.9819		10.9819		0.0		P
Copper		27.3853		28.4205		3.7		P
Iron	ŀ	32433.3008		33916.7617		4.5		P
Lead		17.1825		16.0192		7.0		P
Magnesium	533.6	1247.5990		1410.8860		12.3		P
Manganese		1410.8860		1324.4399		6.3		P
Mercury	0.0	0.1017		0.1112		8.9		cv
Nickel	4.3	11.4728		11.8997		3.7		P
Potassium		2875.1340		3043.7571		5.7		P
Selenium	0.5	2.0224		2.0907		3.3		P
Silver		0.2057	В	0.1491	В	31.9		P
Sodium		393.1697	В	396.5849	В	0.9		P
Thallium	1.1	3.4792		3.1057		11.3		P
Vanadium		30.8751		31.8997		3.3		P
Zinc		102.4440		106.4354		3.8		P
Cyanide		0.5034	ט	0.5082	U			AS

7 LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLINGTON			Contract:	Contract: 23046			
Lab Code:	STLVT	Case No.:	23046	SAS No.: _		SDG No.:	<u>IDS001</u>	

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous		Solid (mg/kg)					
Analyte	True	Found	%R	True	Found C	Limits	%R	
Cyanide				6.0	5.9	5.4	6.6 98.3	

7 LABORATORY CONTROL SAMPLE

 Lab Name:
 STL BURLINGTON
 Contract: 23046

 Lab Code:
 STLVT
 Case No.: 23046
 SAS No.: SDG No.: IDS001

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found C	Limits	₹R	
Cyanide				6.0	5.9	5.4	6.6 98.3	

7 LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001
Solid LCS	Source: ERA lot249/USEPA 0996/ERA 1	Lot0899	
Aqueous LC	S Source:		

	Aqueous	(ug/L)		Solid (mg/kg)				
Analyte	True	Found	%R	True	Found C	Limit	s %R	
Cyanide				6.0	6.47	90.0	110.0 107.9	

LABORATORY CONTROL SAMPLE

Lab Name	STL BURLINGTON	Contract:	23046
----------	----------------	-----------	-------

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source: _____

	Aqueo	ıs (ug/L)			Solid	(mg/kg)	•	
Analyte	True	Found	. % R	True	Found C	Limi	.ts	%R
Aluminum				200.0	205.5	160.0	240.0	102.8
Antimony				50.0	55.3	40.0	60.0	110.6
Arsenic				24.0	25.4	19.2	28.8	105.8
Barium	l			200.0	208.8	160.0	240.0	104.4
Beryllium				5.0	5.4	4.0	6.0	108.0
Cadmium	l			25.0	26.1	20.0	30.0	104.4
Calcium				2000.0	2195.0	1600.0	2400.0	109.8
Chromium				20.0	21.7	16.0	24.0	108.5
Cobalt				50.0	52.0	40.0	60.0	104.0
Copper	1			25.0	27.8	20.0	30.0	111.2
Iron				100.0	110.2	80.0	120.0	110.2
Lead				22.0	23.0	17.6	26.4	104.5
Magnesium				2000.0	2129.0	1600.0	2400.0	106.4
Manganese	l j			50.0	53.3	40.0	60.0	106.6
Nickel				50.0	52.0	40.0	60.0	104.0
Potassium				2000.0	2174.0	1600.0	2400.0	108.7
Selenium			Ī	21.0	21.0	16.8	25.2	100.0
Silver				25.0	23.8	20.0	30.0	95.2
Sodium				2000.0	2176.0	1600.0	2400.0	108.8
Thallium	İ			25.0	25.9	20.0	30.0	103.6
Vanadium				50.0	53.7	40.0	60.0	107.4
Zinc	l			50.0	53.0	40.0	60.0	106.0

7 LABORATORY CONTROL SAMPLE

Lab	Name:	STL BURLINGTON	Contract:	23046	

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous	s (ug/L)			Solid (mg/kg)		
Analyte	True	Found	%R	True	Found C	Limi	ts	%R
Aluminum				200.0	211.2	160.0	240.0	105.
Antimony				50.0	55.7	40.0	60.0	
Arsenic				24.0	25.7	19.2	28.8	107.
Barium				200.0	208.5	160.0	240.0	104.
Beryllium			i i	5.0	5.3	4.0	6.0	106.
Cadmium				25.0	26.5	20.0	30.0	106.
Calcium			İ	2000.0	2197.0	1600.0	2400.0	109.
Chromium			i i	20.0	21.9	16.0	24.0	109.
Cobalt			i	50.0	51.7	40.0	60.0	103.
Copper			<u> </u>	25.0	29.9	20.0	30.0	119.
Iron			İ	100.0	117.8	80.0	120.0	117.
Lead			İ	22.0	23.8	17.6	26.4	108.
Magnesium		······································	i i	2000.0	2140.0	1600.0	2400.0	107.
Manganese	·		İ	50.0	53.7	40.0	60.0	107.
Nickel				50.0	52.7	40.0	60.0	105.
Potassium				2000.0	2418.0	1600.0	2400.0	120.
Selenium				21.0	21.2	16.8	25.2	101.
Silver	<u> </u>			25.0	26.3	20.0	30.0	105.
Sodium	<u> </u>			2000.0	2164.0	1600.0	2400.0	108.
Thallium	<u>. </u>			25.0	26.1	20.0	30.0	104.
Vanadium	<u> </u>		<u> </u>	50.0	54.3	40.0	60.0	108
Zinc	1			50.0	56.4	40.0	60.0	112

LABORATORY CONTROL SAMPLE

Lab	Name:	STL BURLINGTO	ONNC		Contract:	23046		
Lab	Code:	STLVT	Case No.:	23046	SAS No.: _		SDG No.: IDS	001

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous	aqueous (ug/L) Solid (mg/kg)					
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury				0.1	0.1	0.1	0.1 100.0

7 LABORATORY CONTROL SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source: _____

	Aqueous	(ug/L)		Solid (mg/kg)			
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury]		0.1	0.1	0.1	0.1 100.0

7 LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLINGTON			Contract:	23046	
Lab Code:	STLVT	Case No.:	23046	SAS No.: _	SDG No.:	IDS001

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)			
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury				0.1	0.1	0.1	0.1 100.0

7 LABORATORY CONTROL SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: _____ SDG No.: IDS001

Solid LCS Source: ERA lot249/USEPA 0996/ERA lot0899

Aqueous LCS Source:

	Aqueous (ug/L)				Solid (m	g/kg)	
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury				0.1	0.1	0.1	0.1 100.0

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLBKSSS080.5L

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): SOIL Level (low/med): LOW

	Concentra	1110	n Units: ug/L			,	
Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	м
Aluminum	127400.00		131300.00		3.1	ĺ	P
Antimony	74.83		87.42	В	16.8		P
Arsenic	1002.00		1070.00		6.8		P
Barium	3971.00		4062.00		2.3		P
Beryllium	5.97		6.22	В	4.2		P
Cadmium	0.30	U	1.50	U			P
Calcium	37580.00		39050.00		3.9		P
Chromium	59.12		64.46		9.0		P
Cobalt	102.90		108.30	В	5.2		P
Copper	256.60		261.70		2.0		P
Iron	303900.00		313900.00		3.3		P
Lead	161.00		171.70		6.6		P
Magnesium	11690.00		12020.00	В	2.8		P
Manganese	13220.00		13090.00		1.0		P
Nickel	107.50		115.50	В	7.4		P
Potassium	26940.00		26880.00		0.2	1	P
Selenium	18.95		22.68	В	19.7		P
Silver	1.93	В	4.50	טן	100.0		P
Sodium	3684.00	В	5753.00	В	56.2		P
Thallium	32.60		45.78	В	40.4		P
Vanadium	289.30	1	294.50		1.8		P
Zinc	959.90	Ì	1019.00	П	6.2	1	P

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDS001
ICP ID Number:	Date: 07/01/03
Flame AA ID Number: Lachat Cyanide	
Furnace AA ID Number:	
Watto	

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	M
Cyanide			10	10.0	AS

Comments:

INSTRUMENT DETECTION LIMITS (QUARTERLY)

10

Lab Name: STL BURLINGTO	·	Contrac	t: <u>23046</u>				
Lab Code: STLVT C	046	SAS No.: SDG No.: IDS001					
ICP ID Number:			Date:	07/01/03	<u> </u>		
Flame AA ID Number: <u>Le</u> Furnace AA ID Number: _	eman Hydra	AA			;		
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
·	Mercury	253.70		0.2	0.10	CV	

Comments:

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDS001
ICP ID Number: TJA ICAP 4	Date: 07/01/03
Flame AA ID Number:	
Furnace AA ID Number:	

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Aluminum	308.215		200	23.6	Р
Antimony	206.838		60	4.7	P
Arsenic	189.042		10	4.8	P
Barium	493.409		200	5.9	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.6	P
Calcium	317.933		5000	182.1	P
Chromium	267.716		10	1.4	P
Cobalt	228.616		50	2.0	P
Copper	324.754		25	2.4	P
Iron	271.441		100	33.3	P
Lead	220.353		3	1.3	P
Magnesium	279.078		5000	178.3	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.1	P
Potassium	766.491		5000	393.0	Р
Selenium	196.026		5	3.4	P
Silver	328.068		10	2.2	Р
Sodium	330.232	"	5000	472.7	P
Thallium	190.864		10	5.7	Р
Vanadium	292.402		50	2.0	Р
Zinc	213.856		20	1.0	P

Comments:			

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON			Contract: 23046			
Lab Code: STLVT C	ase No.: 230	046	SAS No.	•	SDG	No.: IDS001
ICP ID Number: TJA ICAP	5		Date:	07/01/03		
Flame AA ID Number:						
Furnace AA ID Number: _						
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
	Manganese	294.920		15	1.9	P
					·	

Comments:

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046				
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDS001				
ICP ID Number: TJA ICAP 6	Date: 07/01/03				
Flame AA ID Number:					
Furnace AA ID Number:					

Analyte	Wave- length	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Aluminum	(nm) 308.215		200	18.3	P
Antimony	206.838		60	3.8	P
Arsenic	189.042		10	2.4	P
Barium	493.409		200	7.3	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.3	P
Calcium	317.933		5000	223.2	P
Chromium	267.716		10	0.6	P
Cobalt	228.616		50	1.8	P
Copper	324.754		25	1.4	P
Iron	271.441		100	16.8	P
Lead	220.353		3	1.5	P
Magnesium	279.079		5000	181.7	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.0	P
Potassium	766.491		5000	250.0	P.
Selenium	196.026		5	1.7	P
Silver	328.068		10	0.9	P
Sodium	330.232		5000	218.8	P
Thallium	190.864		10	2.8	P
Vanadium	292.402		50	2.2	P
Zinc	206.200		20	5.7	P

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046
Lav	name.	DID DOUBLINGTON	Concract.	25040

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave- length	I	Interelement	Correction 1	Factors for:	
Analyte	(nm)	Al	Ca	Fe	Mg	Ba
Aluminum	308.22	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Arsenic	189.04	0.0000000	0.000000	-0.0000600	0.0000000	0.000000
Barium	493.41	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Boron	249.68	0.0000000	0.000000	0.0008950	0.0000000	0.000000
Cadmium	226.50	0.0000000	0.000000	0.0000330	0.0000000	0.000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	0.0004320
Copper	324.75	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Iron	271.44	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.0006300	0.000000	0.0000090	0.0000000	0.000000
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000200	0.000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.03	0.0000000	0.000000	-0.0000220	0.0000000	0.0000000
Silicon	288.16	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Thallium	190.86	0.0000200	0.000000	-0.0000900	0.0000000	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.000000	0.0000490	0.0000000	0.000000
Zinc	213.86	0.0000250	0.000000	0.0000630	0.0000000	0.000000

Comments:	 		 		

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046
Lab	Name:	SIL BURLINGION		

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave- length	I	nterelement	Correction I	Tactors for:	
Analyte	(nm)	Со	Cr	Cu	Mn	Мо
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0072400
Antimony	206.84	0.0000000	0.0111600	0.0000000	0.0000000	-0.0024800
Arsenic	189.04	0.0000000	0.0004700	0.0000000	0.0000000	0.0013380
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.72	0.0001150	0.0000000	0.000000	0.0000000	0.0001350
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	-0.0016380
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Iron	271.44	0.1059800	0.0000000	0.0000000	0.0000000	0.0036200
Lead	220.35	-0.0022600	-0.0001190	0.000000	0.0000000	-0.0007540
Magnesium	279.08	0.0000000	0.0000000	0.0000000		0.000000
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.60	-0.0004300	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	•	0.000000
Selenium	196.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Silicon	288.16	0.0000000	-0.0038600	0.0000000		-0.0042750
Silver	328.07	0.0000000	0.0000000	0.0000000	·	
Sodium	330.23	0.0000000	0.0000000	0.0000000		0.0000000
Thallium	190.86	0.0032700	0.0002540	0.0000000		0.0000000
Tin	189.99	0.0000000	0.0000000	0.000000	·	0.000000
Vanadium	292.40	0.0000000	0.0000000	0.000000		
Zinc	213.86	0.0000000	0.0000000	0.0003300	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLINGTON	Contract:	23046
ьар	Name:	STL BURLINGTON	001102400.	

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

	Wave-	I	nterelement	Correction	Factors for:	
Analyte	length (nm)	Ni	Sb	Sn	V	Zn
Aluminum	308.22	0.0000000	0.0000000	0.1440400	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0006280	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.75	0.0000000	0.0000000	0.0000000	-0.000192	0.0000000
Iron	271.44	0.0000000	0.0000000	0.000000	0.0237000	0.0000000
Lead	220.35	0.0001240	-0.0002280	0.0000000	0.0005020	0.000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.03	0.0000000	0.0001660	0.0000000	0.0000000	0.000000
Silicon	288.16	0.0000000	0.0000000	-0.1212200	·	0.000000
Silver	328.07	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.23	0.0000000	0.000000	0.0000000		0.1177000
Thallium	190.86	0.0000000	0.0000000	0.0000000	0.0025400	0.000000
Tin	189.99	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	213.86	0.0052400	0.0000000	0.0000000	0.0000000	0.000000

Comments:	
•	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON	Contract: 23046
--------------------------	-----------------

<u>.</u>	Wave-			Correction	E	
Analyte	length	-	ncerelemenc	Correction	factors for:	
Anaryce	(nm)	Al	Ca	Fe	Mg	Ag
Aluminum	308.22	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.000000	0.0000050	0.0000000	0.0000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000070	0.000000	0.0000830	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000290	0.000000	0.0000000	0.0000000	0.0000000
Cobalt	228.61	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Copper	324.75	0.0000000	0.0000000	0.0000060	0.0000000	0.0000000
Iron	271.44	0.0001300	0.000000	0.0000000	-0.000400	0.0000000
Lead	220.35	0.0008600	0.000000	0.0000920	-0.000008	0.0000000
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	294.92	0.0000000	0.000000	0.0006580	0.0000180	0.0000000
Molybdenum	202.03	0.0000000	0.000000	0.0000260	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Phosphorus	178.29	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000100	0.0000000	-0.0001300	-0.000010	0.0000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Strontium	421.55	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	-0.0000090	0.000000	-0.0004350	0.0000000	0.0000000
Titanium	334.94	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	-0.0003250	0.0000000	0.0000000
Zinc	213.85	0.0000000	0.000000	0.0000800	0.0000390	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL BURLING	GTON	_ Contract:	23046
-----	-------	-------------	------	-------------	-------

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

	Wave-	II Interelement Correction Factors for:					
Analyte	length]	
	(nm)	As	В	Be	Cd	Со	
Aluminum	308.22	0.0026340	0.0000000	0.0000000	0.0000000	0.0000000	
Antimony	206.84	0.0002400	0.0000000	0.0000000	0.0000000	0.0000000	
Arsenic	189.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000840	
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Cobalt	228.61	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000610	
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0000000	0.0840960	
Lead	220.35	0.0000000	0.0000000	0.0000000	0.0000000	-0.0026440	
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Manganese	294.92	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Molybdenum	202.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.0022990	
Phosphorus	178.29	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Selenium	196.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	
Strontium	421.55	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Thallium	190.86	0.0000000	0.000000	0.0000000	0.0000000	0.0018110	
Titanium	334.94	0.0000000	0.000000	0.0000000	0.0000000	-0.0002200	
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	0.0000000	
Zinc	213.85	0.000000	0.000000	0.0000000	0.0000000	0.0000000	

Comments:	 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 23046

	Wave- length	Interelement Correction Factors for:					
Analyte	(nm)	Cr	Cu	Mn	Na	Ni	
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Antimony	206.84	0.0087280	0.000000	0.0000000	0.0000000	0.000000	
Arsenic	189.04	-0.0088830	0.0000000	0.0000000	0.0000000	0.000000	
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Cadmium	226.50	0.000.0000	0.000000	0.0000000	0.0000000	0.0001070	
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Chromium	267.72	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Cobalt	228.61	0.0000000	0.000000	0.0000000	0.0000000	0.000000	
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Lead	220.35	-0.0000530	-0.0000340	0.0000000	0.0000000	0.000000	
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Manganese	294.92	-0.0015990	0.0000000	0.0000000	0.0000000	0.000000	
Molybdenum	202.03	0.0004700	0.0000000	0.0000000	0.0000000	0.000000	
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Phosphorus	178.29	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Selenium	196.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Silver	328.07	-0.0000990	0.000000	0.0000000	0.0000000	0.000000	
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.000000	
Strontium	421.55	0.0000000	0.000000	0.0000000	0.0000000	0.000000	
Thallium	190.86	0.0002810	0.000000	0.0000000	0.0000000	0.000000	
Titanium	334.94	0.0002200	0.0000000	0.0000000	0.0000000	0.000000	
Vanadium	292.40	-0.0020840	0.000000	0.0000000	0.0000000	0.000000	
Zinc	213.85	0.000000	0.000000	0.0000000	0.0000000	0.000000	

Comments:			 	
		 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name:	STL	BURLINGTON	Contract:	23046

	Wave- length		Interelement	Correction 1	Factors for:	
Analyte	(nm)	Pb	Sb	Se	Si	Tl
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	. 0.0000000	0.000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.0000000	0.000000	0.0000000	0.0000000
Cobalt	228.61	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.0000000	-0.0001650	0.0000000	0.0000000	0.0000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	294.92	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0005120
Phosphorus	178.29	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000650
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Strontium	421.55	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Titanium	334.94	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Zinc	213.85	0.0000000	0.000000	0.0000000	0.0000000	0.0000000

Comments:						
	 	 	 			
	 · · · · · · · · · · · · · · · · · · ·	 	 			

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLINGTON	·	Contract: 23046	
Lab	Code: STLVT	Case No.: <u>23046</u>	SAS No.:	SDG No.: IDS001

	Wave-		Interelement	Correction	Factors f	or:	
Analyte	length		_				
	(nm)	V	Zn				
Aluminum	308.22	-0.0084630	0.000000				
Antimony	206.84	-0.0060220	0.000000				
Arsenic	189.04	0.0000000	0.000000				
Barium	493.41	0.0000000	0.000000				
Beryllium	313.04	0.0009440	0.0000000				
Cadmium	226.50	0.0000000	0.000000				
Calcium	317.93	0.0000000	0.0000000				
Chromium	267.72	-0.0001950	0.0000000				
Cobalt	228.61	0.0000000	0.0000000				
Copper	324.75	0.0000000	0.0000000				
Iron	271.44	0.0124990	0.0000000				
Lead	220.35	0.0000000	0.0000000				
Magnesium	279.08	0.0000000	0.0000000				
Manganese	294.92	0.0078880	0.000000				
Molybdenum	202.03	-0.0000010	0.000000				
Nickel	231.60	0.0000000	0.0000000				
Phosphorus	178.29	0.0000000	0.000000				
Potassium	766.49	0.0000000	0.0000000				
Selenium	196.03	0.0000920	0.0000000		1		
Silver	328.07	0.0000910	0.000000				
Sodium	330.23	0.0000000	0.0593250				
Strontium	421.55	0.0000000	0.000000				
Thallium	190.86	-0.0011100	0.000000				
Titanium	334.94	0.0000000	0.000000				
Vanadium	292.40	0.0000000	0.000000				
Zinc	213.85	-0.0000350	0.0000000				

Comments:	 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLING	TON	Contract: 23046	
Lab	Code: STLVT	Case No.: 23046	SAS No.:	SDG No.: IDS001

	Wave-	I	nterelement	Correction	Factors for:	
Analyte	length	_ _	_	.	V	Aq
	(nm)	Al	Ca	Fe	Mg	
Aluminum 🗀	308.215	0.0000000	0.0000000	-0.0002180	0.0000000	0.0000000
Antimony	206.838	0.0000080	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000170	0.0000000	-0.0000590	0.0000000	0.0000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.000000	-0.0000740	0.0000000	0.0000000
Cadmium	226.502	0.0000010	0.0000000	0.0000590	0.0000000	0.0000000
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0000100	0.0000000	-0.0000200	0.0000060	0.0000000
Cobalt	228.616	0.0000000	0.0000000	-0.0000400	0.0000000	0.0000000
Copper	324.754	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0001740	0.0000000	0.0000000	-0.001587	0.0000000
Lead	220.353	-0.0000300	0.0000000	0.0000550	-0.000006	0.0000000
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000200	0.000000
Molybdenum	202.030	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.000000	-0.0000520	0.0000000	0.0000000
Phosphorus	178.287	0.0000070	0.000000	0.0000000	0.0000000	0.000000
Potassium	766.491	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.026	0.0000000	0.0000000	-0.0007500	0.0000000	0.000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000		0.000000
Strontium	421.552	0.0000000	0.0000240	0.0000000	0.0000000	0.000000
Thallium	190.864	0.0000080	0.000000	-0.0001100	·	0.000000
Tin	189.989	0.0000090	0.000000	-0.0000750		0.000000
Titanium	334.941	0.0000000	0.000000	0.0000000		0.000000
Vanadium	292.402	0.0000000	0.000000	0.0000030		0.000000
Zinc	206.200	0.0000300	0.000000	-0.0000600	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 23046

	Wave-	т	nterelement	Correction D	Tactors for	•
Analyte	length					
	(nm)	As	В	Be	Cd	Со
Aluminum	308.215	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.409	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cadmium	226.502	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Iron	271.441	0.0000000	0.000000	0.0000000	0.0000000	-0.0082960
Lead	220.353	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	257.610	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.030	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Phosphorus	178.287	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.026	0.0000000	0.000000	0.0000000	0.0000000	-0.0001900
Silver	328.068	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.232	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Thallium	190.864	0.0000000	0.000000	0.0000000	0.0000000	0.0002350
Tin	189.989	0.0000000	0.000000	-0.0004370	0.0000000	0.0000000
Titanium	334.941	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Zinc	206.200	0.0000000	0.000000	0.0000000	0.0000000	0.0000000

Comments:	 	 	 	
	-	 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001

	Wave- length		Interelement	Correction	Factors for:	
Analyte	(nm)	Cr	Cu	Mn	Na	Ni
Aluminum	308.215	0.0000000	0.0000000	0.0000000		0.0000000
Antimony	206.838	0.0078510	0.0000000	0.0000000		0.0000000
Arsenic	189.042	-0.0002840	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.000000	0.0000000		0.000000
Beryllium	313.042	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.000000	0.0000000		.0.000000
Cadmium	226.502	0.0000000	0.000000	0.0000000	0.0000000	-0.0001750
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Iron	271.441	0.0008900	0.000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	0.000000	0.0000000	0.0000000	0.0000800
Magnesium	279.079	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.604	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Phosphorus	178.287	-0.0007400	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.026	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.864	0.0000000	0.0000000	-0.0004500	0.0000000	0.0000000
Tin	189.989	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Zinc	206.200	0.0044570	0.0000000	0.0000000	0.0000000	0.0000000

Comments:	
,	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STL BURLINGTO	Ν	Contract:	23046	
Lab	Code: STLVT	Case No.: 23046	SAS No.:		SDG No.: IDS001

	Wave- length	I	nterelement	Correction I	Factors for:	
Analyte	(nm)	Pb	Sb	Se	Si	Tl
Aluminum	308.215	0.0000000	0:0000000	0.0000000	0.0000000	0.0000000
Antimony	206.838	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Arsenic	189.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.042	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.678	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	317.933	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Copper	324.754	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Iron	271.441	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Molybdenum	202.030	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Phosphorus	178.287	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Potassium	766.491	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.026	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Silver	328.068	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Sodium	330.232	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Strontium	421.552	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.864	-0.0003500	0.0000000	0.0000000	0.0000000	0.000000
Tin	189.989	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Titanium	334.941	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	<u> </u>	0.000000
Zinc	206.200	0.0003900	0.0000000	0.0000000	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	b Name: STL BURLINGTON			Contract:	23046		
Lab	Code:	STLVT	Case No.:	23046	SAS No.:		SDG No.: IDS001

	Wave-		Interelement	Correction	Factors	for:
Analyte	length					
	(nm)	V	Zn		_	
Aluminum	308.215	0.0173200	0.000000			
Antimony	206.838	-0.0012700	0.0000000			
Arsenic	189.042	-0.0002800	0.0000000			
Barium	493.409	0.0000000	0.000000			
Beryllium	313.042	0.0004800	0.0000000			
Boron	249.678	0.0000000	0.0000000			
Cadmium	226.502	0.0000000	0.0000000			
Calcium	317.933	0.0000000	0.000000			
Chromium	267.716	-0.0003600	0.0000000			
Cobalt	228.616	0.0000000	0.0000000			
Copper	324.754	0.0000000	0.0000000			
Iron	271.441	0.0081200	0.0000000			
Lead	220.353	-0.0000850	0.0000000			
Magnesium	279.079	0.0000000	0.000000			
Manganese	257.610	0.0000000	0.0000000]	
Molybdenum	202.030	0.0000000	0.000000			
Nickel	231.604	0.0000000	0.000000			
Phosphorus	178.287	0.0000000	0.0164830			
Potassium	766.491	0.0000000	0.0000000			
Selenium	196.026	0.0000000	0.0000000			
Silver	328.068	-0.0003350	0.0000000			
Sodium	330.232	-0.1479730	0.6581000			
Strontium	421.552	0.0000000	0.0000000			
Thallium	190.864	0.0014900	0.0000000			
Tin	189.989	0.0000000	0.0000000			
Titanium	334.941	0.0000000	0.0000000			
Vanadium	292.402	0.0000000	0.0000000			
Zinc	206.200	-0.0004730	0.0000000			

Comments:	

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	STL	BURLINGTON	Contract:	23046

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	M
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	10000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	10000.0	P
Magnesium	10.00	500000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	10000.0	P
Potassium	10.00	100000.0	P
Selenium	10.00	5000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	5000.0	P

Comments:	

12 ICP LINEAR RANGES (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046
Lab Code: STLVT Case No.: 23046	SAS No.: SDG No.: IDS001
ICP ID Number: TJA ICAP 5	Date: 07/01/03
Integ Time	· I Componium tion :

Analyte Time (Sec.)	Concentration (ug/L)	М
Manganese 10.00	100000.0	P

Comments:

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	STL	BURLINGTON	Contract: 2304	6

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	100000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	50000.0	P
Magnesium	10.00	600000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	50000.0	P
Potassium	10.00	100000.0	P
Selenium	10.00	5000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	10000.0	P

Comments:	

13 PREPARATION LOG

Lab Name:	STL BURLINGTON		Contract:	23046		
-----------	----------------	--	-----------	-------	--	--

Method: AS

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
ICV	O8/01/03		50.0
IDOLWPSSS030.5	08/01/03	1.00	50.0
IDOLWPSSS210.5	08/01/03	1.06	50.0
IDOLWPSUS023.5	08/01/03	1.26	50.0
LCS0801B	08/01/03	1.00	50.0
LCSD0801B	08/01/03	1.00	50.0
PBS0801B	08/01/03	1.01	50.0

13

PREPARATION LOG

Lab Name: STL BURLINGTON Contract: 23046

Method: AS

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
ICV	08/02/03	50.0	50.0
IDOLBKSSS080.5	08/02/03	1.06	50.0
IDOLBKSSS080.5D	08/02/03	1.05	50.0
IDOLBKSSS080.5S	08/02/03	1.03	50.0
IDOLTASSS100.5	08/02/03	1.14	50.0
IDOLTASSS110.5	08/02/03	1.05	50.0
IDOLTASSS190.3	08/02/03	1.02	50.0
IDOLTASSS200.5	08/02/03	1.01	50.0
IDOLTASSS230.5	08/02/03	1.03	50.0
IDOLTASUS201.0	08/02/03	1.08	50.0
IDOLWPSSS010.5	08/02/03	1.03	50.0
IDOLWPSSS020.5	08/02/03	1.02	50.0
IDOLWPSSS090.5	08/02/03	1.09	50.0
IDOLWPSSS170.5	08/02/03	1.05	50.0
IDOLWPSUS033.5	08/02/03	1.00	50.0
IDOLWPSUS041.0	08/02/03	1.07	50.0
IDOLWPSUS18100	08/02/03	1.07	50.0
IDOLWPSUS185.5	08/02/03	1.02	50.0
LCSD0802B	08/02/03	1.00	50.0
PBS0802B	08/02/03	1.07	50.0

13

PREPARATION LOG

Method: CV

EPA Sample No.	Preparation Date	Initial Weight (a)	Volume (mL)
DOLTASSS230.5 08/13/03		0.66	100.0
IDOLWPSSS020.5	08/13/03	0.62	100.0
IDOLWPSSS030.5	08/13/03	0.63	100.0
IDOLWPSSS210.5	08/13/03	0.63	100.0
IDOLWPSUS023.5	08/13/03	0.63	100.0
LCSDS0813A	08/13/03	1.00	100.0
LCSS0813A	08/13/03	1.00	100.0
PBS0813A	08/13/03	0.60	100.0

13 PREPARATION LOG

Lab Name: STL BURLINGTON Contract: 23046

Method: CV

EPA Sample No.	Preparation Date	Initial Weight (a)	Volume (mL)
IDOLBKSSS080.5	08/14/03	0.62	100.0
IDOLBKSSS080.5D	08/14/03	0.64	100.0
IDOLBKSSS080.5S	08/14/03	0.63	100.0
IDOLTASSS100.5	08/14/03	0.62	100.0
IDOLTASSS110.5	08/14/03	0.63	100.0
IDOLTASSS190.3	08/14/03	0.65	100.0
IDOLTASSS200.5	08/14/03	0.62	100.0
IDOLTASUS201.0	08/14/03	0.66	100.0
IDOLWPSSS010.5	08/14/03	0.61	100.0
IDOLWPSSS090.5	08/14/03	0.61	100.0
IDOLWPSSS170.5	08/14/03	0.64	100.0
IDOLWPSUS033.5	08/14/03	0.67	100.0
IDOLWPSUS041.0	08/14/03	0.63	100.0
IDOLWPSUS18100	08/14/03	0.61	100.0
IDOLWPSUS185.5	08/14/03	0.64	100.0
LCSS0814E	08/14/03	1.00	100.0
LCSSD0814E	08/14/03	1.00	100.0
PBS0814E	08/14/03	0.60	100.0

13

PREPARATION LOG

Lab	Name:	STL BURLINGT	ON	Contract:	23046			
Lab	Code:	STLVT	Case No.: 23046	SAS No.:		SDG No.:	TDS001	

Method: P

EPA Sample No.	Sample No. Date		Volume (mL)
DOLTASSS230.5 08/20/03		1.15	100.0
IDOLWPSSS020.5	08/20/03	1.06	100.0
IDOLWPSSS030.5	08/20/03	1.04	100.0
IDOLWPSSS210.5	08/20/03	1.10	100.0
IDOLWPSUS023.5	08/20/03	1.06	100.0
LCSS0820D	08/20/03	1.00	100.0
PBS0820D	08/20/03	1.00	100.0

13 PREPARATION LOG

Lab	Name:	STL BURLINGTON	Contract:	23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDS001</u>

Method: P

EPA Sample No.	Sample No. Date		Volume (mL)
IDOLBKSSS080.5	08/22/03	1.00	100.0
IDOLBKSSS080.5D	08/22/03	1.00	100.0
IDOLBKSSS080.5S	08/22/03	1.00	100.0
IDOLTASSS100.5	08/22/03	1.01	100.0
IDOLTASSS110.5	08/22/03	1.08	100.0
IDOLTASSS190.3	08/22/03	1.02	100.0
IDOLTASSS200.5	08/22/03	1.07	100.0
IDOLTASUS201.0	08/22/03	1.03	100.0
IDOLWPSSS010.5	08/22/03	1.04	100.0
IDOLWPSSS090.5	08/22/03	1.12	100.0
IDOLWPSSS170.5	08/22/03	1.08	100.0
IDOLWPSUS033.5	08/22/03	1.16	100.0
IDOLWPSUS041.0	08/22/03	1.13	100.0
IDOLWPSUS18100	08/22/03	1.01	100.0
IDOLWPSUS185.5	08/22/03	1.06	100.0
LCSS0822E	08/22/03	1.00	100.0
PBS0822E	08/22/03	1.00	100.0

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

EPA													7	na	ly	te	s										
Sample	D/F	Time	% R		S	Α	В	В	С	С	С	_	С					Н	N	K	٦	Δ	N	т	v	Z	С
No.				L	В	s			D	A			Ū		В		N	G	I		E			L	*	N	И
s0	1.00	1707																			İ				Г		Х
S10	1.00	1708																		Ī							x
S30	1.00	1709																			Ī	Π			Γ		X
S50	1.00	1710																			Ī	İ			Π	П	Х
S100	1.00	1711																			İ				Γ		x
S200 ·	1.00	1712																								П	Х
s300 ·	1.00	1713																									Х
ICV	1.00	1715																									X
ICB	1.00	1716																								П	X
LRS	1.00	1717																								П	x
LRS	1.00	1718																					П			П	x
CCV	1.00	1719								i																П	x
ССВ	1.00	1720									T										Ī				П	П	x
ZZZZZZ	1.00	1721				Ī				ì	T				T											П	
PBS0801B	1.00	1722								一															П	П	x
LCS0801B	1.00	1723		П						T				1													x
LCSD0801B	1.00	1724											i														x
ZZZZZZ	1.00	1724					一																			П	_
ZZZZZZ	1.00	1725							i		T	Ì														\Box	_
ZZZZZZ	1.00	1726		П						ī	_															П	
ZZZZZZ	1.00	1727					T		ij	T			i	T				Ì									
ZZZZZZ	1.00	1728				Ī			Î				T		Ì			ij							П		_
ZZZZZZ	1.00	1729								Ī		Ì			T										П	П	_
CCV	1.00	1730				Ī			Ī	Ti	Ī	i											Ī				x
CCB	1.00	1731			T	ī	Ī	Ì		i				T	\exists	Ī							ī			T	x
ZZZZZZ	1.00	1732				T		Ī		T		ī			ヿ	一											_
ZZZZZZ	1.00	1733	-			i			一	ī	寸	T		T												T	_
ZZZZZZ	1.00	1734				Ī			Ì	ī	i	i						寸									_
ZZZZZZ	1.00	1735								ī		ī			٦	i		Ì	ī							一	_
ZZZZZZ	1.00	1736						一	ī		T	i	T	寸		一										寸	_
ZZZZZZ	1.00	1737							寸	T	T	i	T	\exists	T			T									_
ZZZZZZ	1.00	1738			Ī	T			ī	寸	寸	i	T	T	T	i		T									_
ZZZZZZ	1.00	1739			一	1				寸	1	T	寸	寸	1	寸	寸	1	\dashv						\dashv	寸	-
ZZZZZZ	1.00	1740			T	一	1	1	7	_	7		\dashv	1	1	1	1	_							\dashv	\dashv	
ZZZZZZ	1.00	1741			_	一	1	ᅵ	寸	\dashv			1	\dashv	1	\dashv		寸							\dashv	一	-
ccv	1.00	1742				i	7	ᅵ	ᅥ	\dashv	寸		1	7	寸	1	1	寸							\dashv	\dashv	x
CCB	1.00	1743	:	\Box	1	寸	1	7	7	寸	寸	寸	\dashv	1	7	ᅦ	ᅦ	寸	乛			_	7		ᅥ	\dashv	x
ZZZZZZ	1.00	1744		一		ᆉ	一	i	+	十	十	寸	一	十	_	ᅥ	ᅦ	_	_			_		_	ᅥ	_	-

14

ANALYSIS RUN LOG

 Lab Name: STL BURLINGTON
 Contract: 23046

 Lab Code: STLVT
 Case No.: 23046
 SAS No.: SDG No.: IDS001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/01/03 End Date: 08/01/03

EPA		D/F Time % R A S A B B C C C C F P M M H N K S A N T T T B S A E D A R O U E B G N G I E G A L 1.00 1746																					
Sample No.	D/F	Time	% R	A		1		I —								4				1 1	1 1	- 1	Z
IDOLWPSUS023.5	1.00	1745		╁		一	-	┝一		Ť					<u>-</u>	Н				\vdash	_		4
IDOLWPSSS210.5	1.00	1746		\vdash			I	_		+	\dashv	-			_		Н			ᆜ		+	ᆛ
IDOLWPSSS030.5	1.00	1747		T			l			1	\dashv		Н		-					ᆜ	\dashv	\dashv	_
CCV	1.00	1748	·							\dashv	ᅥ	_			_			Ш	 		\dashv		ᆛ
CCB	1.00	1749		<u> </u>				-	_	\dashv	\dashv	\dashv	ᅱ	_				_	 \dashv	긕		\dashv	+

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 End Date: 08/02/03

EPA													7	lna	1у	te	s										_
Sample	D/F	Time	% R	A	S	Α	В	В	С	С	С	С		F			М	Н	N	К	s	A	N	т	v	Z	С
No.				L	В	s	A	E	D		R		U		В			G			E	G	A		1		N
S0	1.00	1256							H										H	 -	<u> </u>			_	-		Х
S10	1.00	1257						İ											İ		<u> </u>						x
S30	1.00	1258										П															x
S50	1.00	1259			-			<u> </u>		i		П								<u> </u>							x
S100	1.00	1300																			<u> </u>					Н	x
S200	1.00	1301														_											x
S300	1.00	1302		П																	<u> </u>						×
ICV	1.00	1304																		\vdash							x
ICB	1.00	1305		П											一												x
LRS	1.00	1306													寸												$\bar{\mathbf{x}}$
LRS	1.00	1307		П											一												x
CCA	1.00	1308													_												x
CCB	1.00	1309												1	_									_			x
PBS0802B	1.00	1310										1		1	寸								_			\dashv	x
ZZZZZZ	1.00	1311		Н									ᅥ		寸		T	_					1				
LCSD0802B	1.00	1312										_		_	寸	-							_	ᅱ		\dashv	x
IDOLWPSSS020.5	1.00	1313		\vdash								_		_	\dashv	\dashv	-	_			Н	_	+	_			<u></u>
IDOLTASSS230.5	1.00	1314	-	Н							\dashv		_		_	ᅥ		ᅥ	_				ᅥ	ᅥ		\dashv	\bar{x}
IDOLWPSSS090.5	1.00	1315		H	-						_	_	7	\dashv	十	ᅥ		┪	ᅱ		Н	_	_			\dashv	x
IDOLWPSUS033.5	1.00	1316									寸	7	_	寸	+		\dashv	+				┪	_			\dashv	<u></u>
IDOLWPSUS041.0	1.00	1317				_					_				十	ᅦ	ᅥ	_	_	一			_			1	x
IDOLTASSS110.5	1.00	1317					_				ᅥ	\dashv	ᅦ	_		ᅥ	\dashv	_	_		\dashv	_	\dashv			-	<u></u>
IDOLWPSSS010.5	1.00	1318		\Box	ᅦ	<u> </u>					寸	7		-	_	7	1	_	_			ᅥ	+	\dashv	ᅥ	\dashv	x
CCV	1.00	1319				ᅥ					┪	! 	ᅥ	_	1	1	7	\dashv	_	_		_	_	_	\dashv	\dashv	$\bar{\mathbf{x}}$
ССВ	1.00	1320			_	ᅥ		\dashv		_	_	\dashv	1	十	1		寸	┪	┪		ᅱ	\dashv	<u>니</u>	ᅦ	\dashv	\dashv	x
IDOLTASSS100.5	1.00	1321			ᅥ	\dashv	一十				+	廿	ᅱ	\dashv	ᅥ	1	-	ᅥ	ᅦ	긤	\dashv	ᅦ	_	-	_	十	x
IDOLWPSSS170.5	1.00	1322			ᅦ	_		一	1	ᅥ	ᅥ	ᅥ		\dashv	十	ᅥ	-	寸	┪	_	\dashv	-		\dashv	_	\dashv	<u>x</u>
IDOLWPSUS185.5	1.00	1323			ᅥ			_	<u> </u>	一	ᅥ	_	-	\dashv	十	1	一	ᅦ	ᅱ	_	ᅥ	ᆛ	_	-	ᅥ	\dashv	<u>x</u>
IDOLBKSSS080.5	1.00					_			_	-	-	十	+	十	十	1	+		┪	_	\dashv	\dashv	ᅥ	┪	\dashv	十	×
IDOLBKSSS080.5D		1325						_	_	-1	_	十	ᅥ	_	十	ᅥ	十		1	_	_	ᅥ	+	\dashv	_	十	<u>~</u>
IDOLBKSSS080.5S		1326		+	ᅥ	\dashv	十	-	_	╅	ᆉ		_	\dashv	-	+	ᅥ	-+	\dashv	_	_		<u> </u>	\dashv	\dashv		X
IDOLWPSUS18100		1327		+	_	┪	一	- 	_	+	廿	ᆉ	+	十	\dashv	+	ᅥ	+	ㅓ			\dashv	_	\dashv	-		<u>x</u>
IDOLTASSS190.3	1.00			\dashv	\dashv		\dashv	ᆉ	┪	-	\dashv	\dashv	\dashv	+	╅	\dashv	\dashv	\dashv	-	_	ᅱ	ᅥ	\dashv	\dashv	ᅢ		$\frac{x}{x}$
IDOLTASSS200.5	1.00			\dashv	ᅱ		\dashv		ᅱ	\dashv	十	+	+	\dashv	\dashv	\dashv	\dashv	\dashv	-	ᆛ	\dashv	ᅱ	\dashv	\dashv	ᅱ	<u>-</u> -	$\frac{\mathbf{x}}{\mathbf{x}}$
IDOLTASUS201.0	1.00			\dashv	┰	ᆛ		_	_	十	ᆉ			\dashv	\dashv	+	ᅥ	\dashv	┥	ᆛ	+	\dashv	ᆛ	+	ᅥ		$\frac{\mathbf{x}}{\mathbf{x}}$
ccv	1.00			+				-	ᅥ	\dashv	ᆉ	十	\dashv	\dashv	\dashv	\dashv	\dashv	+	ᆉ	ᆛ	+	-	ᆉ	\dashv	-		X
ССВ	1.00			\dashv	-	+	\dashv	ᅱ	\dashv	<u> </u>	\dashv	ᆉ	\dashv	ᆉ	\dashv	\dashv	┪	\dashv	\dashv	닉	\dashv		+	1	-	_	<u>^</u>
ZZZZZZ		1333				+	-+	ᅱ	-	+	+	+	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		+	-+	-	+	-		+	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/02/03 End Date: 08/02/03

EPA								2	\na	ly	te	s														
Sample No.	D/F	Time	% R	A	1	l I		B E		C A	l	0			P B			H G	l I	S E		N A	_	V	z N	_
ZZZZZZ	1.00	1334		1				Г	Γ	İ		İ									Г	П				
ZZZZZZ	1.00	1335																						Π		_
ZZZZZZ	1.00	1336					Ī																			
IDOLBKSSS080.5A	1.00	1337						Ī																		Х
ccv	1.00	1338																								х
ССВ	1.00	1339			1				Π																	x

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 6 Method: P

Start Date: 09/06/03 End Date: 09/06/03

EPA Analytes Sample D/F Time | % R AS BBCCCCFPMMHNKSAN No. sl LB AEDAROUEBGNGI EGAL N N SO 1.00 1813 S 1.00 1817 S 1.00 1821 S 1.00 1824 Х LRS 1.00 1829 X LRS 1.00 1833 Х LRS 1.00 1837 X ICV 1.00 1841 Х ICB 1.00 1846 Х ICSA 1.00 1850 Х ICSAB 1.00 1854 Х CRI 1.00 1858 Х CCV 1.00 1902 х CCB 1.00 1906 Х ZZZZZZ 1.00 1910 ZZZZZZ 1.00 1915 ZZZZZZ 1.00 1919 ZZZZZZ 1.00 1923 ZZZZZZ 1.00 1927 ZZZZZZ 5.00 1931 ZZZZZZ 1.00 1935 ZZZZZZ 1.00 1939 ZZZZZZ 1.00 1943 ZZZZZZ 1.00 1947 CCV 1.00 1951 Х ССВ 1.00 1955 Х ZZZZZZ 1.00 1959 ZZZZZZ 5.00 2003 ZZZZZZ 1.00 2007 ZZZZZZ 1.00 2011 ZZZZZZ 1.00 2015 ZZZZZZ 1.00 2020 ZZZZZZ 1.00 2024 ZZZZZZ 1.00 2028 ZZZZZZ 1.00 2032 ZZZZZZ 1.00 2036 CCV 1.00 2040 Х CCB 1.00 2044 Х

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 6 Method: P

Start Date: 09/06/03 End Date: 09/06/03

																				_							
EPA													7	√na	ly.	te	s										
Sample	D/F	Time	% R	A	s	A	В	В	C	С	С	С	С	F	P	М	М	Н	N	K	s	Α	N	T	v	Z	С
No.				L	В	s	A	E	D	A	R	0	บ	E		G		G			E	G	A	L			N
ZZZZZZ .	. 1.00	2048		T	_					İ	İ	Ī			i											П	
ZZZZZZ	1.00	2052		Ì			Ī		İ	Ì	İ	Ī								Ī						П	Γ
ZZZZZZ	1.00	2056					Ī	İ		Ī	İ		Ì							İ			П			П	Γ
ZZZZZZ	1.00	2100		Ī	İ	İ														Γ							Γ
ZZZZZZ	1.00	2104					İ				<u> </u>						П										Γ
ZZZZZZ	1.00	2108						Ì		Ī	i ·	Г	П		T											П	Γ
ZZZZZZ	1.00	2112					Ì																				Γ
ZZZZZZ	1.00	2116					İ		Γ		<u> </u>				一								П			П	Γ
ZZZZZZ	1.00	2121					İ				Ì		i		一											П	
ZZZZZZ	1.00	2125											П		T i									_		П	
ccv	1.00	2129					х		1				Π					П			П						
ССВ	1.00	2133					х	İ							寸			一									
ZZZZZZ	1.00	2137		П									П		_												_
ZZZZZZ	5.00	2141								П				T													_
ZZZZZZ	1.00	2145		П																			i				
ZZZZZZ	1.00	2149		İ					İ	П				一				_	_								_
ZZZZZZ	1.00	2153						Г					i					T									_
ZZZZZZ	1.00	2157		П											寸						_ 						_
ZZZZZZ	1.00	2201						İ							T			一					T				_
ZZZZZZ	1.00	2205												一	ij	i										一	_
IDOLTASUS201.0	1.00	2209		İΠ			х							1	寸				ī				\neg				_
CCV	1.00	2213		Πİ			х							ī		T	i								一		
CCB	1.00	2218					х								寸								一			T	_
ICSA	1.00	2222					Х							寸	\dashv	寸	ᅥ					ヿ	ᅥ	1	1	一	_
ICSAB	1.00	2226					х								1	ᅦ	1	\dashv	7		_		_	一	ᅥ	\dashv	
CRI	1.00	2230					х							_	一	1	7	1	ᅦ		ᅥ	_	_	ᅥ	ᅥ	\dashv	
CCA	1.00	2234			╗	- 	х							\dashv	\dashv	7	ᅥ	ᅥ	1		┪	┪	ᅥ	ᅥ	一	\dashv	_
CCB	1.00	2238					х							_	十	寸	一	寸	7	 	ᅥ	_		-	7	-	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Instrument ID Number: TJA ICAP 4 Method: P

start Date: <u>09/18</u>	., 03							•		1 L		٠.	<u> </u>	<u>/ =</u>	<u>U/</u>	<u> </u>			_								
EPA					•		• • • • • • • • • • • • • • • • • • • •						P	na	lу	te	s										
Sample	D/F	Time	% R	A	s	A	В	В	С	С	С	С	С	F	P	М	М	Н	N	к	s	A	N	Т	v	Z	С
No.				L	В	s	A	E	D	A	R	0	ט	E	В	G	N	G			E	G			ı	1	И
S0	1.00	1304		х	x	х	х	x	x	х	х	х	х	х	х	х	Х		Х	х	х	x	x	x	x	х	\vdash
S	1.00	1309		Х			İ			x		Г		х		х				х		一	x			İ	\vdash
S	1.00	1313			х	х					i				х						X	T		x	 		\vdash
S	1.00	1316		Î			x	x	x	i	x	х	х				х		X			x			x	х	$\overline{}$
LRS	1.00	1321		х	х	х	Х	x	x	x				x	х	x	х		х	х	х	<u> </u>	х	lх	x	Х	
LRS	1.00	1326		х	х	х	х	x		x		x		_	х		х		х		_				x		_
LRS	1.00	1331		х	х	х	х	х	x	x	x		х		х		Х	_	х	_		•	х	-	x		_
ICV	1.00	1335		х	х	х	х	х	x	x		х					х		х			_		х		Х	
ICB	1.00	1340		х	х	х	х	<u> </u>		x		Х				_	х		х	_	_	•	х		X	х	_
ICSA	1.00	1345		х	х	Х	х	х		x	х		х		х		х		х	_			х	!	Х	X	_
ICSAB	1.00	1350		х	х	х		х	⊢	Х	x	_	x		х		x	\dashv	x			Ļ	х	_	x	Х	
CRI	1.00	1354		х	х	х	х	x			х		$\overline{}$		х		Х		х					х		Х	—
CCV	1.00	1359		х				<u> </u>		х			_		х		х		x				Х		X	X	
CCB	1.00	1404		х		х				_	Х			_	x	_	х	!	x				х		x	x	
ZZZZZZ	1.00	1408		H										-				-				-			Ĥ		
ZZZZZZ	1.00	1413							 			\vdash	\dashv	ᅥ	+	十		\dashv	_	<u> </u>					Н	-	
ZZZZZZ	1.00								_				\dashv	ᅱ		+		ᅥ	ㅓ	 							-
ZZZZZZ	1.00								L	Н			1	_	1	寸	-	ᅥ	ᅥ	ᅱ			Н		Н	-	-
ZZZZZZ	1.00	1428								Н			ᅥ	1	十	+	┪	7	\dashv	ᅥ			Ш		님		
ZZZZZZ	1.00	1433										1	\dashv	十	+	_	\dashv	1	_	-			Н				-¦
ZZZZZZ	5.00	1437											十		十	+	十	1	\dashv	ᅥ	\exists			-			-¦
ZZZZZZ	1.00	1442			_	一							\dashv	十	十	\dashv	+	\dashv	ᅥ	ᅥ	ᅱ		Н			\dashv	¦
ZZZZZZ	1.00	1446				_				Н			十	+	\dashv	+	\dashv	+	+	ᅥ	ㅓ		_	\dashv		_	-¦
ZZZZZZ	1.00	1451			_					Н	_		\dashv	\dashv	+	ᆉ	\dashv	+	\dashv	1	┪			ᅱ		\dashv	۰¦
ccv	1.00	1456		х	х	x	x	х	x	x	х	y	굯	v l	$\frac{1}{x}$	7	\mathbf{x}	\dashv	\mathbf{x}	ب xl	ᆔ	x	χ	х	v	х	-¦
ССВ	1.00	1501		\mathbf{x}			х					$\overline{}$			X	_	x						x	$\overline{}$		x	۰¦
ZZZZZZ	1.00	1505		_	1	거						^	弁	-		+		十			-				쉬	쒸	-¦
ZZZZZZ	1.00			_	寸	_	寸	ᅥ			-	1	\dashv	十	十	十	十	ᅥ	\dashv	-	-		\dashv	\dashv	ᆉ	ᆉ	-¦
ZZZZZZ	1.00			7	\neg	_	_					_	十	十	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	긤	\dashv		\dashv	\dashv	ᆉ	-¦
PBS0820D	- 	1520		\mathbf{x}	х	$\frac{1}{x}$	$\frac{1}{x}$	$\frac{1}{x}$	X	x	x	νİ	v	~ 	x z	-	x	ᅥ	χÌ	ᆔ	y	y	-	v	x	v	-
LCSS0820D		1525			х								_	_	x >		x			_	_			_	위		-¦
IDOLWPSUS023.5	10.00			_		-			ات.			^	^	弁			$\frac{x}{x}$	-					4		 +	X	-¦
IDOLWPSUS023.5	1.00			$\frac{1}{x}$	x	$\frac{1}{x}$	${\mathbf{x}}$	$\frac{1}{x}$	 X	χl	x	y l	vl	$\frac{1}{2}$	x h	<u> </u>	+	\dashv	$\frac{1}{x}$	ᆔ	$\frac{1}{x}$	$\frac{1}{x}$	$\frac{1}{x}$	x	_		-¦
IDOLWPSSS210.5	10.00			\dashv	_	x						-	7	+		-	x	+	 +				<u> </u>		쉬	十	-¦
IDOLWPSSS210.5	1.00			\mathbf{x}	 -		x	$\frac{1}{x}$	$\frac{1}{x}$	x l	x.	y l	렀	٠t	x >	-	+	\dashv	$\frac{1}{x}$	<u> </u>	$\frac{1}{x}$	y	$\frac{1}{\mathbf{x}}$	$\frac{1}{\mathbf{y}}$	x	ᆛ	-¦
IDOLWPSSS030.5	1.00				x										_		x							X		$\frac{2}{x}$	-
CCV	1.00				x				_			-				_	x		_		_	_		x			-
ССВ	1.00				$\frac{x}{x}$										x >		<u>^</u>							x		X X	-

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

EPA													2	۱na	ly	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	s	A	N	T	v	Z	С
No.				L	В	S	A	E	D	A	R	0	ט	E	В	G	И	G	I		E	G	A	L		N	N
IDOLWPSSS020.5	10.00	1602					х				Γ				х											П	Г
IDOLWPSSS020.5	1.00	1607		x	х	х		x	X	x	x	x	х	х		х	х		Х	Х	х	х	Х	х	х	Х	Γ
IDOLTASSS230.5	1.00	1611		x	Х	х	х	x	х	x	_	х	x			X	х		Х	Х	Х	х	Х	Х	Х	х	Γ
ICSA	1.00	1616		х	х	х	х	x	x	х	х	х	x	х	х	Х	х		Х	Х	Х	х	х	х	х	х	Γ
ICSAB	1.00	1621		х	х	х	х	х	х	Х	X	х	х	х	х	x	х		Х	Х	х	Х	х	х	х	х	
CRI	1.00	1625	·	X	Х	Х	x	х	Х	х	x	x	x	х	х	x	x		Х	X	X	х	Х	х	х	х	Γ
CCV	1.00	1630		х	Х	х	х	х	x	х	Х	х	x	х	Х	x	х		Х	Х	X	Х	Х	х	х	х	Γ
ССВ	1.00	1635		х	х	х	х	Х	х	х	Х	х	x	х	х	X	х		х	х	х	х	х	х	х	х	Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 6 Method: P

	.																										
EPA													7	lna	ly	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	A	N	T	V	Z	C
No.				L	В	s	A	E	D	A	R	0	U	E	В	G	N	G	I		E	G	A	L		N	N
S0	1.00	1348		X	·X	х	Х	Х	Х	х	Х	х	х	х	Х	X	Х		X	Х	Х	х	х	Х	х	х	
S	1.00	1352		x						х				х		X				х			х			П	
S	1.00	1355			х	Х	<u> </u>								Х						x			х			
S	1.00	1359					Х	х	Х		X	х	х				X		X			Х			x	X	
LRS	1.00	1404		Х	Х	Х	Х	х	Х	х	X	х	x	х	X	X	X		X	X	X	х	Х	Х	x	X	
LRS	1.00	1408		х	x	х	х	х	Х	Х	X	х	x	х	X	Х	X		Х	Х	X	X	х	Х	х	x	
LRS	1.00	1412		x	х	х	Х	x	Х	Х	X	х	x	x	X	X	X		X	Х	X	Х	х	Х	$ \mathbf{x} $	X	
ICV	1.00	1416		x	x	Х	Х	х	Х	x	X	х	х	х	Х	x	X		X	Х	X	Х	Х	X	$ \mathbf{x} $	х	
ICB	1.00	1420		х	х	х	х	х	х	x	Х	х	х	х	Х	х	х		Х	Х	X	х	х	х	х	х	Π
ICSA	1.00	1424		х	х	х	х	х	х	х	Х	х	х	х	Х	X	Х		х	Х	X	х	х	х	х	Х	Γ
ICSAB	1.00	1429		Х	х	х	х	х	х	х	Х	х	х	х	Х	X	Х		Х	Х	X	х	Х	х	х	Х	Γ
CRI	1.00	1433		х	х	х	х	х	х	х	Х	х	x	x	Х	Х	Х		Х	X	х	х	х	х	x	х	Γ
CCV	1.00	1437		х	х	х	х	х	х	Х	х	х	х	х	X	х	Х		х	Х	х	х	х	х	х	х	Γ
ССВ	1.00	1441		х	Х	х	х	х	х	х	х	x	х	х	X	х	Х		х	Х	х	х	х	x	х	х	
PBS0822E	1.00	1445		х	х	Х	Х	х	х	х	х	x	х	х	х	х	х		х	X	Х	х	х	x	х	Х	_
LCSS0822E	1.00	1449		х	Х	х	х	х	х	x	х	х	х		х	х	х		Х	Х	х	х	х	х	х	х	
ZZZZZZ	10.00	1453																								П	_
IDOLWPSSS090.5	1.00	1457		х	Х	х	х	х	х	х	х	х	х	х	х	х	х		х	Х	x	х	х	х	x	x	
ZZZZZZ	10.00	1501								П																	_
IDOLWPSUS033.5	1.00	1505		х	х	х	х	х	х	х	х	х	х	х	х	х	х		х	Х	х	х	х	х	х	х	_
IDOLWPSUS041.0	1.00	1509		х	х	х	х	х	Х	X	х	x	х	х	х	х	х		х	Х	х	Х	х	х	х	Х	_
IDOLTASSS110.5	1.00	1513		х	Х	Х	х	х	х	х	х	x	х	х	х	х	Х		х	Х	х	х	х	х	х	х	_
ZZZZZZ	1.00	1518																									_
ZZZZZZ	100.00	1522								i		i						T								\Box	_
ccv	1.00	1526		х	Х	х	Х	Х	Х	x	X	х	х	х	х	х	Х		х	Х	х	х	Х	Х	х	х	_
CCB	1.00	1530		х	х	х	х	х	х	x	Х	х	х	х	х	х	х	T	х	Х	X	х	х	Х	х	x	_
IDOLWPSSS010.5	10.00	1534				х	х			Π		i		T	Х			T	一				х	х	П	х	_
IDOLWPSSS010.5	1.00	1538		х	х			х	х	х	х	x	х	х		х	Х		х	х	х	х			х	П	
ZZZZZZ	1.00	1542		П						П											•					П	_
ZZZZZZ	1.00	1546																								П	_
IDOLTASSS100.5	1.00	1550		х	х	х	х	х	х	x	Х	хİ	x	х	х	x	х		х	Х	х	X	х	Х	х	х	
IDOLWPSSS170.5	1.00	1554		х		_		_		x				$\overline{}$			х		х		_		_		х		
IDOLWPSUS185.5	1.00	1558		х	х	х		х		x				х			$\overline{\mathbf{x}}$		х			_			х		
IDOLBKSSS080.5	1.00	1602		х				х	_	x	_			_			ᅵ		х			_			х		_
IDOLBKSSS080.5L	5.00	1606		х				х		x	_	$\overline{}$	_	x	_				х						х		
IDOLBKSSS080.5A	1.00	1610		х						بـــب				х	_	_		_	х		х		П		х		
CCV	+ +	1614		х			_			x				x		\mathbf{x}	х		х		_		х		х		_
ССВ	+	1619			х									_		_	х		x			_			х	-	_

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 6 Method: P

EPA													P	ma	ly	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	Н	N	K	S	A	N	T	v	Z	С
No.				L	В	s	A	E	D	A	R	0	บ	E	В	G	И	G	I		E	G	A	L		N	N
IDOLBKSSS080.5D	1.00	1623		х	Х	х	х	X.	Х	Х	Х	х	х	х	Х	Х			Х	Х	Х	х	X	х	х	Х	
IDOLBKSSS080.5S	1.00	1627		х	х	х	x	x	х		Х	х	х	х	X				Х		х	х		x	х	х	Γ
IDOLWPSUS18100	1.00	1631		х	Х	х	X	x	x	x	Х	х	х	х	Х	x	Х		Х	Х	х	х	х	х	х	х	Γ
IDOLTASSS190.3	1.00	1635		x	х	х	x	х	х	x		х		х	х	X	х		х	Х	х	х	х	x	х	х	Γ
IDOLTASSS200.5	10.00	1639		П			İ			İ							х							İ			
IDOLTASSS200.5	1.00	1643		х	х	х	х	х	х	x	х	х	х	х	х	x			х	х	х	х	х	x	x	х	
IDOLTASUS201.0	1.00	1647		х	х	х	Ī	х	x	x	x	x	х	х	х	X	х		х	Х	х	х	х	х	х	х	Γ
ccv	1.00	1651		х	х	х	х	х	x	x	х	x	х	х	х	x	х		х	Х	х	x	х	х	х	х	
ССВ	1.00	1655		х	х	х	х	х	x	x	х	х	х	х	х	Х	х		Х	Х	Х	х	х	х	х	х	
ICSA	1.00	1659		х	х	х	х	х	х	х	Х	х	х	х	Х	X	х		Х	Х	Х	х	Х	х	x	х	
ICSAB	1.00	1704		х	х	х	x	х	х	x	Х		х	х	х	х	х		Х	Х	X	х	х	х	х	Х	
CRI	1.00	1708		х	х	х	х	х	x	x	х		х	х	х	x	х		X	Х	X	х	х	x	х	x	_
ccv	1.00	1712		х	х	х	х	х	х	x	Х		х	х	х	x	х		Х	Х	X	х	х	x	х	х	
CCB	1.00	1716		х	Х	х	х	х	х	х				х	х	х	х		х	х	х	х	х	x	х	х	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001

Instrument ID Number: TJA ICAP 5 Method: P

EPA													1	\na	ıly	te	s							_		
Sample No.	D/F	Time	% R	A	S	A	В	В	С	С	С	С	С					Н	N	к	s	A	N	Т	v	Z
				L	В	s	A	E	D	A	R	0	บ	E	В	G	N	G	I				A			И
S0	1.00	2228				一	一	一						İ	┢	Ė	х		_	H	╁	╁	╁╴		,	\dashv
S	1.00	2234				i	i i	İ						i		\vdash		<u> </u>	\vdash	H	-	_	╁╌	H	ᅱ	\dashv
S	1.00	2238				İ	Ī												-	\vdash		ŀ			\dashv	\dashv
S	1.00	2242				i	İ	i							_		х				<u> </u>	<u> </u>			┥	\dashv
LRS	1.00	2249					İ										Х	_		_		_	Н	-	\dashv	\dashv
LRS	1.00	2254		П				<u> </u>									х		_	\vdash	<u> </u>		Н		\dashv	ᆉ
LRS	1.00	2300					i										х			_			Н	\dashv	ᅱ	\dashv
ICV	1.00	2306					<u> </u>		Н		_		_			Н	Х		_	L	L		님	\dashv	ᆛ	井
ICB	1.00	2312				_	l			- 	<u> </u>					Н	X	_			Ш			\dashv	\dashv	ᆛ
ICSA	1.00	2318							-	ᅱ		-	-		_		X		_					-	-+	\dashv
ICSAB	1.00				一			_					-	+		\vdash	$\frac{\hat{x}}{x}$	\dashv			Щ		Ц		ᆛ	+
CRI	1.00	2330		\vdash	\dashv		Ш		\dashv		-	_	ᅱ	\dashv	-	닉	x		_	_			\dashv		ᆛ	+
CCV		2336			\dashv		Н		_	-+	-		\dashv	{	_	-	$\frac{\lambda}{ \mathbf{x} }$		_	_				+	+	\dashv
CCB		2341		+	ᅥ				\dashv	-+	-	-	\dashv	+			$\frac{\lambda}{\mathbf{x}}$	-	-	_		_	_	+	-	+
ZZZZZZ	100.00			-	-				 	┪		ᆛ	\dashv	-	-		쉬	-	ᅴ			_	_	-	+	十
ZZZZZZ	100.00			\dashv						ᆛ	\dashv	-	+	+	┥	-	-	-	_	_		_	_	4	\dashv	丰
ZZZZZZ				+			\dashv	\dashv	+	井	-+	-+	\dashv	+	ᅱ	-	\dashv	_	-	4		_	-	_	+	4
ZZZZZZ	10.00			+	+	 ¦	\dashv		+	+	ᆉ	ᆛ	+	ᆉ	_		4	-+	4	긕	-	_	_	4	ᅷ	4
ZZZZZZ	10.00			-	\dashv	-		\dashv	\dashv	+	+	+	-	\dashv	-	\dashv	-	-+	-	4	\dashv	_	-	+	\downarrow	_
IDOLBKSSS080.5	10.00			+	-	_	\dashv	+	-+	-	+	+	+	+		-	-	4	4	_	\dashv		_	_	4	+
IDOLBKSSS080.5L				ᆉ	十	ᆛ	\dashv	\dashv	+	-	十	+	\dashv	+	\dashv		x x	4	-	4	-	4	_	_	+	+
IDOLBKSSS080.5A	10.00	0028		+	+	- 	\dashv	\dashv	\dashv	+	+	ᆛ	+	4	\dashv			_	+			4	4	_	+	丰
IDOLBKSSS080.5D	10.00	0033		+		\dashv	-	\dashv	-	井	+	-	+	\dashv	4	_	X		-	4	4	4	4	-	+	4
IDOLBKSSS080.5S	10.00			+	\dashv	-+	-	\dashv	+	+	+	+	+	-	+		X	+	4	4	-	4	_	_	4	4
CCV		0045		+	\dashv	- 	\dashv	-+	+	+	+	+	+	+	1		X	+	4	4	4	4	<u> </u>		+	4
ССВ	1.00			ᅷ	ᆛ	_	\dashv	-	+	+	_	+	+	+	4		x	4	4	1	\perp	\perp	_Ļ	4	丰	丄
ZZZZZZ		0057		-	\dashv	-+	\dashv	+	+	+	+	+	-	+	4	_	x	_	4	_ļ		4	ㅗ		\bot	丄
ZZZZZZ	1.00			+	ᆉ	- 	-	+	+	+	+	+	+	4	4	-	_	1	4	4	4	4			4	丰
ZZZZZZ	1.00			+	+	-	\dashv	\perp	-	+	-	4	+	-	4	+	\perp	\perp	\perp	4	_	1	Ļ		\downarrow	丄
ZZZZZZ	1.00			+		4	+	-+	+	+	4	+	_	+	4	4	4	4	4	ᆜ	_		_Ļ		丄	丄
ZZZZZZ	1.00			+	+	-	_	_	-	ᆜ	4	4	4	\perp	4	4	1	_	4	ļ	\perp	_		┸	丄	丄
ZZZZZZ	1.00			+	+	+	<u> </u>		<u> </u>	ㅗ	4	부	_	_	4				1	_	\downarrow	\perp			丄	丄
ZZZZZZ	1.00			- -	-	4	_	\perp	4	+	4	Ļ	4	4	4	_	1	_	1	\perp	\perp	\perp	\perp	\perp	丄	丄
CCSA	1.00			- -	+	+	_	4	4	丰	_	4	4		_ _	丰		\perp	丄	Ţ	\perp	\perp		⊥	Ţ	\perp
CSAB				+	+	_	_	4	Ļ	Ļ	_	Ļ	4_	4			X	\perp	ļ		\perp	\perp				\perp
CRI	1.00		<u>_</u>	\perp	4	ᆛ	_	4	1		_	Ļ	丄	_Ļ	Ļ	- -	X	\perp	╧		\perp					\perp
CCV	1.00			_	_	Ļ		4	Ļ	Ļ	\perp	Ļ	\bot	\bot		- -	X		\perp	\perp	\perp				$oldsymbol{ol}}}}}}}}}}}}}} $	$oxed{oxed}$
CCB	1.00						\perp	\perp		\perp	L	\perp	\perp		\perp	_ 2	x L			-						Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 08/14/03 End Date: 08/14/03

EPA													P	na	ly	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	₽	М	М	Н	N	К	s	A	N	T	v	Z	С
No.				L	В	s	A	E	D	A	R	0	ซ	E	В		И	G	I		E	G		L			N
S0	1.00	1447																х				Ĺ				П	
S0.2	1.00	1449		Ī	Ì	İ	Ī			i								х			i					П	_
s0.5	1.00	1451																х				_					_
S1	1.00	1453																х									_
S5	1.00	1454													T			х									_
S10	1.00	1456													T			х			<u> </u>						_
ICV	1.00	1458					Ì										П	х	_								_
ICB	1.00	1500		П			İ											х									-
CRA	1.00	1501		İ														х			_					H	—
ccv	1.00	1503					i											х									_
ССВ	1.00	1505		i														х						一	\neg		—
PBS0813A	1.00	1507		П			<u> </u>					ᅥ		ᅥ	ᅥ			х						-			—
LCSS0813A	1.00	1508												ᅥ	_			х								\exists	-
LCSDS0813A	1.00	1510		Ħ											寸			x						1	_	一十	-
ZZZZZZ	1.00	1512		П							ᅥ		寸	一		_							-	ᅥ	ᅦ	\dashv	-
ZZZZZZ	1.00	1514									\neg	_	一	一	_			7					ᅥ		ㅓ	寸	-
ZZZZZZ	1.00	1516		П							一	_		1			H	-				_	_		_	$\neg \dagger$	-
ZZZZZZ	1.00	1518		П							Ti		寸	寸			_	一					_	ᅥ	ᅥ	十	-
ZZZZZZ	1.00	1519										T		1		_		_		 		┪		_	_	\dashv	-
ZZZZZZ	1.00	1521									一	ᅵ	T		\dashv	┪	7	_		_		_	_	ᅥ	一	十	-
CCV	1.00	1523		П						ij	寸	7		寸	寸		\dashv	x	寸	_		\neg	ᅥ	\neg	\dashv	十	-
CCB	1.00	1525							\neg	寸		ᅥ	寸	寸	一	ᅦ	-	\mathbf{x}	ᅥ	 				\dashv	\dashv	十	-¦
ZZZZZZ	1.00	1527		H						一				\dashv	1	┪	寸	_	┪		ᅥ	ᅦ	ᅥ	7	\dashv	十	-
ZZZZZZ	1.00	1528							ij	寸	T				寸	7	寸		T		\dashv		\exists	7	寸	十	-¦
ZZZZZZ	1.00	1530		П		i			7			<u>_</u>	\exists	一	一		1	寸	7	ᅥ			1		_	十	¦
ZZZZZZ	1.00	1532			T	一	T				寸	<u> </u>	十	1	寸	ᅥ	i	寸	7	_	_	_	ᅥ	+	1	十	٦¦
ZZZZZZ	1.00	1534		H	i	T		一	寸	T	\neg		7	T	十	1	7	十	7		┪		ᅥ	7	ᅥ	十	-¦
ZZZZZZ	1.00	1535			\dashv	_	\dashv		一		ᅥ	-	1	十	+	1	\dashv	\dashv	1	-	ᅦ	\dashv	<u>[</u>	\dashv	1	十	-¦
ZZZZZZ	1.00	1537			\dashv				_	+	1	寸	十	\dashv	+	1	\dashv	\dashv	-	ᅥ	ᅥ			\dashv	1	\dashv	-¦
ZZZZZZ	1.00	1539			_	_		\neg	寸	$\neg \dagger$		+	1	\dashv	+	\dashv	寸	\dashv	\dashv	+	+	_	_	+	+	十	-¦
IDOLWPSUS023.5	1.00	1541		\dashv	ᅥ		_		_	<u>_</u>		\dashv	寸	+	_	+	十	x	+	ᅥ	ᅥ	ᅱ		\dashv	ᅥ	十	-¦
ccv	1.00	1543				<u> </u>	一十		1	+	+	_	\dashv	十	\dashv	+	\dashv	x	+		\dashv	ᅱ	十	+	ᅥ	十	۰¦
ССВ	1.00	1545					_	\neg	_	- 	+	+	十	十	+	\dashv	\dashv	x	\dashv	+	+	ᅱ	- 	\dashv	\dashv	\dashv	-¦

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 08/14/03 End Date: 08/14/03

EPA													A	na	ly	te	s										
Sample No.	D/F	Time	% R		1	A S	B A		C D	C A	C R		C U		P B	M G		H G			S E		N A	T L	V		
S0	1.00	1654								寸	T		T	┪	T			х					İ	_		\dashv	_
S0.2	1.00	1656		П										一				х								\dashv	_
S0.5	1.00	1658								_			寸		一			х			Н					\dashv	—
S1	1.00	1700								i	一	ᅥ	寸		一			х	_	_	Н			_	ᅱ	\dashv	
S5	1.00	1701		П						┪		1	_	\dashv	7		Н	х	ᅥ						\dashv	\dashv	_
S10	1.00	1703						_		一			寸	寸			П	х	ᅥ		Н				\dashv	十	—
ICV	1.00	1705				i				T		_	寸	7	T	_		х	\dashv							十	_
ICB	1.00	1707					T			1	T		7	\dashv	1			х	ᅥ						7	十	
CRA	1.00	1709							_	1			+	寸	7	\neg		x	\exists				1	_	ᅱ	十	—
ccv	1.00	1710				1	一			1	\dashv	十	寸	7				х	ᅥ	_	_	_	ᅥ	_	\dashv	\dashv	
CCB	1.00	1712						ヿ	T	寸	\dashv	7	_	1		一		x	+	_			_	1	+	十	—
IDOLWPSSS210.5	2.00	1714							\dashv	寸	1	i	_	\dashv	+	一	ᅥ	х	7	_	\dashv	_	_	ᅦ	1	十	—
IDOLWPSSS030.5	1.00	1716				\dashv	寸	T	1	1	十	7	十	\dashv	+	_	1	x	1	ᅢ	-		寸	+	\dashv	十	
IDOLWPSSS020.5	5.00	1718			_	i			寸	1	十	十	十	+	+	┪	ᅥ	x	┪	-	_	_	十	ᅥ	\dashv	十	_
IDOLTASSS230.5	1.00	1719			一	一	7	一	寸	\dashv	寸	\dashv	\dashv	\dashv	\dashv	ᅥ	+	х	1	ᅥ	\dashv	-	 	\dashv	\dashv	+	
ZZZZZZ	1.00	1721		T		\neg	7	Ì	寸	十		\dashv	+	+	十	1	1	_	\dashv	ᅥ	7	ᅥ	\dashv	+	+	十	
ZZZZZZ	1.00	1723				一	寸	寸	寸	\dashv	<u> </u>	十	十	\dashv	\dashv	1	\dashv	\dashv	十	긤	1		十		\dashv	十	
ZZZZZZ	1.00	1725				\exists	\dashv	寸	寸	寸	十	1	\dashv	\dashv	十	┪	\dashv	十	\forall	1	+	\dashv	\perp	+	+	十	-
ZZZZZZ	1.00	1727		1		寸	寸	7	1	十	+	十	\dagger	\dagger	†	十	十	\dashv	\dashv	ᅥ	\dashv	\dashv	十	\dashv	_	\dashv	_
ZZZZZZ	1.00	1728		寸		1	寸	7	寸	寸	\dashv	\dashv	\dagger	十	十	+	\dashv	\dashv	+	+	\dashv	ᅥ	\dashv	\dashv	\dashv	十	_
CCV	1.00	1730		\dashv	_	+	\dashv	\dashv	Ť	十	十	十	十	†	\dashv	+	\dashv	x	十	井	ᆉ	ᅱ	\dashv	\dashv	\dashv	+	_
ССВ	1.00	1732		ᆉ	_		+	十	十	<u> </u>	+	十	十	+	ᆉ		\dashv	x	+	┥	\dashv		- +	ᆉ	+	井	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: <u>Leeman Hydra AA</u> Method: <u>CV</u>

Start Date: 08/14/03 End Date: 08/15/03

EPA			_										A	ma	lу	te	s										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	M	М	Н	N	К	S	Α	N	Т	v	Z	T
No.				L	В	s	A	E	D	A	R	0	ט	E	В	G	N	G	I		E	G	A	L		N	N
S0	1.00	2326								H					i	•		x				_	H				H
S0.2	1.00	2328								П								х					İ				T
s0.5	1.00	2329								П								х									厂
S1	1.00	2331												T				х									T
S5	1.00	2333		M									i	T				х								_	Г
S10	1.00	2335												T				х									Г
ICV	1.00	2337																х									Г
ICB	1.00	2338		П														х									Γ
CRA	1.00	2340												T				x									_
CCV	1.00	2342		İ								i		Ť				х									Г
ССВ	1.00	2344		П										一				х									Г
PBS0814E	1.00	2346				i								\dashv				\mathbf{x}									
LCSS0814E	1.00	2348		П					П			٦		寸	_	┪		x				-					
LCSSD0814E	1.00	2350				一							<u>†</u>		Ť	ᅥ		x									Π
ZZZZZZ	1.00	2351				i					一	寸	_	寸	1	\dashv	7	寸									$\overline{}$
IDOLWPSSS090.5	1.00	2353								\exists		寸		\dashv	十	7		х									Π
IDOLWPSUS033.5	1.00	2355				i					寸	_	寸	\dashv	一	ᅥ	ᅥ	\mathbf{x}	_								_
IDOLWPSUS041.0	10.00	2357			T	寸	T	_	7	一	寸	ᅥ	\dashv	1	\dashv	ᅥ	ᅥ	х	ᅥ						T		_
IDOLTASSS110.5	1.00	2359					7	T	一	寸		T	寸	_	\dashv	T	\exists	x	7		7			┪	7		_
IDOLWPSSS010.5	100.00	0001				寸	i	一	T		i	i	寸		T	寸		x	1		┪			\neg			_
CCV	1.00	0003			T	i		T		寸	T	寸	T		\dashv	\dashv		х	7		\exists			7			
ССВ	1.00	0005			T	T		T	i	T	一		十	7		T	T	x			7			寸	7		_
IDOLTASSS100.5	1.00	0007				Ť	一			Ti	一	T		寸	寸	T		x	_		一						
IDOLWPSSS170.5	1.00	0009				T	一	一	ī					\dashv	\dashv	1	1	х	7		一				_	一	_
IDOLWPSUS185.5	1.00	0010				i	T	T	T	T	一	Ť	寸	一	7	T	1	х						ᅥ			_
IDOLBKSSS080.5	1.00	0012			ī			T	T	寸	1	寸	寸		\top	7	7	x	7	_			一	ᅥ	1		
IDOLBKSSS080.5S	1.00	0014			寸	T	一		i		T	1	寸	寸	\top	1	T	\mathbf{x}	┪	1	\dashv		1	\exists		1	_
IDOLBKSSS080.5D	1.00	0016		一	T	寸	一		T	寸	寸	寸	\dashv	\dashv	十	T	寸	\mathbf{x}	1	i	7			_	_	ᅥ	
IDOLWPSUS18100	1.00	0018				T		寸	i	十	1	寸	\dashv		十	十	寸	x	7	_	1		ᅥ	_	\dashv	7	—
IDOLTASSS190.3	1.00	0019		T		十			1	十	寸	t	寸	十	十	┪	\dashv	x	1	1	\exists		1	_	+	\exists	_
IDOLTASSS200.5	1.00	0021		一	1	+	\dashv	十	1	十	1	寸	十	十	1	十	\dashv	x	+	ᅥ	\dashv	ᅱ	一	十	+	1	—
ccv	1.00	0023		\dashv	+	十	1	寸	寸	\dashv	寸	十	+	\dashv	\top	+	十	x	十	+	十	ᅦ	ᅱ	+	\dashv	ᅥ	
CCB	1.00	0025		1	1	十	寸	\dashv	十	十	寸	\dashv	十	十	十	+	\dashv	x	\dashv	ᅥ	\dashv	-	_	\dashv	_	\dashv	—
IDOLTASUS201.0	1.00	0027		_	寸	+	\dashv	\dashv	1	一	\dashv	\dashv	\dashv	十	\dashv	十	\dashv	x	1	1	+	ᅦ		\dashv	┪	ᅥ	
ccv		0029		\dashv	十	-	\forall	十	ᅥ	\dashv	\dashv	\dashv	\dagger	+	十	十	十	$\frac{x}{x}$	\dashv	1	\dashv		\dashv	\dashv	+	\dashv	
ССВ		0030		+	-+	十	十	+	ᆉ	\dashv	\dashv	\dashv	十	\dashv	十	\dashv	\dashv	x	\dashv	-	ᅥ		+	+	ᆉ	ᅱ	

Sample Data Summary Package For Metals

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Code: STLVT Case No.: 23046 SOW No.: ILM04.1		
OW No.: ILM04.1	SAS No.:	SDG No.: IDS001-SPLP
EPA Sample No.	Lab Sample ID.	
IDOLBKSSS080.5SPLP	535904	
IDOLBKSSS080.5SPLPD	535904DP	
IDOLBKSSS080.5SPLPS	535904MS	
IDOLWPSSS030.5SPLP	535914	
IDOLWPSUS033.5SPLP	535895	
IDOLWPSUS18100SPLP	535906	
IDOLWPSUS185.5SPLP	535902	
Were ICP interelement corrections applied?		Yes/No YES
Were ICP background corrections applied? If yes-were raw data generated before		Yes/No YES
application of background corrections?	>	Yes/No NO
omments:		
	Time with the training	. and conditions of the
I certify that this data package is in comp	liance with the terms	and conditions of the
contract, both technically and for complete	ness, for other than	the conditions detaile
contract, both technically and for complete above. Release of the data contained in the	ness, for other than is hardcopy data pack	the conditions detaile tage and in the
contract, both technically and for complete:	ness, for other than is hardcopy data pack e has been authorized	the conditions detaile age and in the d by the Laboratory
contract, both technically and for complete above. Release of the data contained in the computer-readable data submitted on disketters.	ness, for other than is hardcopy data pack e has been authorized	the conditions detaile age and in the d by the Laboratory

COVER PAGE - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLBKSSS080.5SPLP

	et: 23046
Lab Code: STLVT Case No.: 23046 SAS	No.: SDG No.: IDS001-SPLP
Matrix (soil/water): WATER	Lab Sample ID: 535904
Level (low/med): LOW	Date Received: 07/26/03

% Solids: 0.0

CAS No.	Analyte	Concentration	·c	Q	М
7429-90-5	Aluminum	3490	Ì	E	P
7440-36-0	Antimony	7.2	В		P
7440-38-2	Arsenic	20.2		1	P
7440-39-3	Barium	47.3	В		P
7440-41-7	Beryllium	0.20	ען		P
7440-43-9	Cadmium	0.60	שן	1	P
7440-70-2	Calcium	2270	В		P
7440-47-3	Chromium	1.8	В		P
7440-48-4	Cobalt	2.0	שן		P
7440-50-8	Copper	5.0	В		P
7439-89-6	Iron	2660	İ		P
7439-92-1	Lead	1.8	B	}	P
7439-95-4	Magnesium	406	В		P
7439-96-5	Manganese	87.8			P
7439-97-6	Mercury	10.0	שן		CV
7440-02-0	Nickel	3.0	B		P
7440-09-7	Potassium	2500	B	<u> </u>	P
7782-49-2	Selenium	3.4	ט		P
7440-22-4	Silver	2.2	שן		P
7440-23-5	Sodium	8580		l	P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	4.7	B		P
7440-66-6	Zinc	24.5			P

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSSS030.5SPLP

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001-SPLP
Matrix (soil/water): WATER	Lab Sample ID:	535914
Level (low/med): LOW	Date Received:	07/26/03

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	•м
7429-90-5	Aluminum	2990	1	E	P
7440-36-0	Antimony	4.7	U	l	P
7440-38-2	Arsenic	4.8	טן		P
7440-39-3	Barium	32.6	В		P
7440-41-7	Beryllium	1.2	В]	P
7440-43-9	Cadmium	2.9	В	ļ	P
7440-70-2	Calcium	585000			P
7440-47-3	Chromium	1.4	U	}	P
7440-48-4	Cobalt	4.6	В		P
7440-50-8	Copper	22.4	В	1	P
7439-89-6	Iron	33.3	Įΰ	1	P
7439-92-1	Lead	5.0	1		P
7439-95-4	Magnesium	5750			P
7439-96-5	Manganese	1100	1	1	P
7439-97-6	Mercury	10.0	U	1	CV
7440-02-0	Nickel	7.3	В	1	P
7440-09-7	Potassium	911	В		P
7782-49-2	Selenium	3.4	U		P
7440-22-4	Silver	2.2	U		P
7440-23-5	Sodium	8380			P
7440-28-0	Thallium	5.7	ע		P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	367		}	P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSUS033.5SPLP

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 2304	6 SAS No.:	SDG No.: IDS001-SPLP
Matrix (soil/water): WATER	Lab Sample ID:	535895
Level (low/med): LOW	Date Received:	07/26/03

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	3620		E	P
7440-36-0	Antimony	4.7	ען		P
7440-38-2	Arsenic	4.8	שן		P
7440-39-3	Barium	30.8	B		P
7440-41-7	Beryllium	0.71	В		P
7440-43-9	Cadmium	1.6	В	<u> </u>	P
7440-70-2	Calcium	595000			P
7440-47-3	Chromium	1.4	שן	j	P
7440-48-4	Cobalt	6.9	В		P
7440-50-8	Copper	25.5			P
7439-89-6	Iron	1130			P
7439-92-1	Lead	15.4			P
7439-95-4	Magnesium	6160			P
7439-96-5	Manganese	797		1	P
7439-97-6	Mercury	10.0	טן		cv
7440-02-0	Nickel	7.8	В		P
7440-09-7	Potassium	986	В		P
7782-49-2	Selenium	3.4	ט		P
7440-22-4	Silver	2.2	טן		P
7440-23-5	Sodium	8470			P
7440-28-0	Thallium	5.7	ט		P
7440-62-2	Vanadium	2.0	שן		P
7440-66-6	Zinc	244			P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts: _	
Comments:					
_					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

|--|

Lab Name:	STL BURLINGTON	Contract: 23046	
Lab Code:	STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001-SPLP
Matrix (so:	il/water): WATER	Lab Sample ID:	535906
Level (low,	/med): LOW	Date Received:	07/26/03
% Solids:	0.0		

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2690		E	P
7440-36-0	Antimony	4.7	שן	1	P
7440-38-2	Arsenic	4.8	טן	1	P
7440-39-3	Barium	55.0	В		P
7440-41-7	Beryllium	0.63	В		P
7440-43-9	Cadmium	0.77	В	1	P
7440-70-2	Calcium	201000			P
7440-47-3	Chromium	1.4	Ū		P
7440-48-4	Cobalt	9.4	В	1	P
7440-50-8	Copper	26.0			P
7439-89-6	Iron	290	1	1	P
7439-92-1	Lead	3.0		1	P
7439-95-4	Magnesium	3390	В		P
7439-96-5	Manganese	916			P
7439-97-6	Mercury	10.0	ען		CV
7440-02-0	Nickel	10.2	В		P
7440-09-7	Potassium	2160	B		P
7782-49-2	Selenium	3.4	שן		P
7440-22-4	Silver	2.2	טן		P
7440-23-5	Sodium	8460			P
7440-28-0	Thallium	5.7	טן		P
7440-62-2	Vanadium	2.0	ען		P
7440-66-6	Zinc	160	1		P

Color Before:	colorless	Clarity Before:	clear	Texture:	
Color After:	colorless	Clarity After:	clear	Artifacts:	
Comments:	· · · · · · · · · · · · · · · · · · ·				
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLWPSUS185.5SPLP

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001-SPLP
Matrix (soil/water): WATER	Lab Sample ID:	535902
Torrol /low/mod): LOW	Date Received:	07/26/03

% Solids: 0.0

CAS No.	Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2760	1	E	P
7440-36-0	Antimony	4.7	U		P
7440-38-2	Arsenic	4.8	U		P
7440-39-3	Barium	60.6	В]	P
7440-41-7	Beryllium	0.65	В	<u> </u>	P
7440-43-9	Cadmium	0.80	B		P
7440-70-2	Calcium	213000			P
7440-47-3	Chromium	1.4	שן	}	P
7440-48-4	Cobalt	9.8	B	ł	P
7440-50-8	Copper	29.9			P
7439-89-6	Iron	284		1	P
7439-92-1	Lead	2.1	B		P
7439-95-4	Magnesium	3410	В		P
7439-96-5	Manganese	980	1		P
7439-97-6	Mercury	10.0	լս		cv
7440-02-0	Nickel	10.3	В		P
7440-09-7	Potassium	2240	В		P
7782-49-2	Selenium	3.4	U		P
7440-22-4	Silver	2.2	U		P
7440-23-5	Sodium	24200			P
7440-28-0	Thallium	5.7	U	l	P
7440-62-2	Vanadium	2.0	U		P
7440-66-6	Zinc	150			P

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:				
_				

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	L Calibratio	n	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum	26000.0	26270.00	101.0	30200.0	30480.00	100.9	30580.00	101.3	P
Antimony	250.0	257.90	103.2	300.0	315.70	105.2	313.50	104.5	P
Arsenic	250.0	252.30	100.9	100.0	102.40	102.4	102.70	102.7	P
Barium	500.0	494.30	98.9	200.0	200.20	100.1	200.00	100.0	P
Beryllium	500.0	504.30	100.9	100.0	99.84	99.8	99.80	99.8	Р
Cadmium	500.0	491.80	98.4	100.0	98.33	98.3	97.81	97.8	P
Calcium	25000.0	25220.00	100.9	30200.0	30320.00	100.4	30200.00	100.0	Р
Chromium	500.0	498.30	99.7	200.0	198.20	99.1	198.20	99.1	P
Cobalt	500.0	491.60	98.3	200.0	198.50	99.2	198.10	99.0	P
Copper	500.0	503.60	100.7	200.0	203.50	101.8	203.00	101.5	Р
Iron	25500.0	26390.00	103.5	30200.0	30630.00	101.4	30730.00	101.8	Р
Lead	1000.0	1005.00	100.5	400.0	399.20	99.8	398.90	99.7	Р
Magnesium	25000.0	25370.00	101.5	30200.0	30260.00	100.2	30310.00	100.4	P
Manganese	500.0	493.30	98.7	200.0	199.00	99.5	198.80	99.4	P
Nickel	500.0	495.50	99.1	200.0	197.90	99.0	197.70	98.8	Р
Potassium	25000.0	26500.00	106.0	30200.0	31590.00	104.6	31850.00	105.5	Р
Selenium	250.0	243.80	97.5	100.0	102.90	102.9	101.30	101.3	P
Silver	500.0	497.20	99.4	100.0	99.74	99.7	100.70	100.7	P
Sodium	25000.0	25090.00	100.4	30200.0	29480.00	97.6	29950.00	99.2	Р
Thallium	250.0	239.60	95.8	100.0	101.00	101.0	97.83	97.8	Р
Vanadium	500.0	495.30	99.1	200.0	199.30	99.6	199.20	99.6	P
Zinc	500.0	501.50	100.3	200.0	202.50	101.2	202.60	101.3	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: .	STL BURLINGTON			Contract: <u>23046</u>	
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.: IDS001-SPLP
Initial Ca	alibration	Source: Inorga	nic Vent	ures/Fisher	
Continuin	g Calibrat:	ion Source: SPE	X/Fisher		

Concentration Units: ug/L

	Initial Calibration		Continuing Calibration						
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum				30200.0	30490.00	101.0			
Antimony				300.0	313.00	104.3	312.90	104.3	P
Arsenic				100.0	104.90	104.9	101.60	101.6	P
Barium				200.0	200.50	100.2	197.40	98.7	P
Beryllium				100.0	100.20	100.2	98.56	98.6	P
Cadmium				100.0	97.47	97.5	96.06	96.1	P
Calcium				30200.0	30480.00	100.9	30000.00	99.3	P
Chromium				200.0	198.10	99.0	195.40	97.7	P
Cobalt				200.0	197.90	99.0	196.60	98.3	P
Copper				200.0	202.60	101.3	200.30	100.2	P
Iron				30200.0	30790.00	102.0	30430.00	100.8	P
Lead				400.0	396.10	99.0	395.10	98.8	P
Magnesium				30200.0	30350.00	100.5	29940.00	99.1	Р
Manganese				200.0	199.20	99.6	196.00	98.0	P
Nickel				200.0	197.20	98.6	195.50	97.8	Р
Potassium				30200.0	31820.00	105.4	31470.00	104.2	P
Selenium				100.0	100.60	100.6	100.90	100.9	Р
Silver				100.0	100.00	100.0	99.30	99.3	Р
Sodium				30200.0	29990.00	99.3	29480.00	97.6	Р
Thallium				100.0	99.05	99.0	99.70	99.7	Р
Vanadium				200.0	198.80	99.4	196.80	98.4	P
Zinc				200.0	202.70	101.4	200.20	100.1	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

_____Contract: 23046 Lab Name: STL BURLINGTON

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	3.0	2.90 96.7	5.0	4.86	97.2	4.6	7 93.4	CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name: _	STL BURLINGTO)N	c	Contract: 23046		
Lab	Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDS001-SPLP
			_		/ - · · ·		

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	1		5.0	4.40	88.0	4.7	4 94.8	CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON	_Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001-SPLP
Initial Calibration Source: Inorganic Ventu	res/Fisher	
Continuing Calibration Source: SPEX/Fisher		

Concentration Units: ug/L

	Initial	. Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury			5.0	4.69	93.8			CV

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTO	N(N		Contract: <u>23046</u>		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDS001-SPLP
Initial Ca	alibration Sou	rce: <u>Inorga</u>	nic Vent	cures/Fisher		
Continuing	g Calibration	Source: SPE	X/Fisher	:		

Concentration Units: ug/L

	Initial C	Calibration	Continuing Calibration							
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М		
Mercury	3.0	2.98 99.3	5.0	4.92	98.4	4.4	3 88.6	CV		

2B-IN CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: <u>SDG No.: IDS001-SPLP</u>

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

						CRDL Star	dard	for ICP	
				ı	Init	cial		Fina	1
Analyte	True	Found	₹R		True	Found	₽R	Found	%R
Aluminum					400.0	448.10	112.0	498.60	124.6
Antimony					120.0	129.20	107.7	130.10	108.4
Arsenic					20.0	22.07	110.4	23.22	116.1
Barium					400.0	396.90	99.2	395.80	99.0
Beryllium					10.0	10.34	103.4	10.44	104.4
Cadmium					10.0	10.35	103.5	10.21	102.1
Calcium	İ				10000.0	10470.00	104.7	10530.00	105.3
Chromium					20.0	21.45	107.2	21.86	109.3
Cobalt					100.0	97.89	97.9	98.37	98.4
Copper	ĺ				50.0	51.84	103.7	51.42	102.8
Iron					200.0	233.80	116.9	265.50	132.8
Lead	İ				6.0	6.89	114.8	7.38	123.0
Magnesium					10000.0	10340.00	103.4	10390.00	103.9
Manganese					30.0	30.32	101.1	30.36	101.2
Nickel					80.0	80.39	100.5	80.86	101.1
Potassium					10000.0	11030.00	110.3	11020.00	110.2
Selenium					10.0	7.75	77.5	8.13	81.3
Silver					20.0	19.86	99.3	20.31	101.6
Sodium					10000.0	10220.00	102.2	10120.00	101.2
Thallium	i			\Box	20.0	17.74	88.7	21.02	105.1
Vanadium	i				100.0	100.40	100.4	100.30	100.3
Zinc	i			\Box	40.0	41.43	103.6	41.58	104.0

Control Limits: no limits have been established by EPA at this time

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				Init	CRDL Standard	for ICP Fina	al
··Analyte	True	Found	%R	True	Found %R	Found	%R
Mercury	0.2	0.17	85.0				

Control Limits: no limits have been established by EPA at this time

2B-IN

CRDL STANDARD FOR AA AND ICP

Contract: 23046 Lab Name: STL BURLINGTON

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				Init	CRDL Standard	for ICP Fina	1
Analyte.	True	Found	%R	True	Found &R	Found	₹R
Mercury	0.2	0.24	120.0				

Control Limits: no limits have been established by EPA at this time

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С	1	C	ontinuing Ca Blank (uq 2			С	Preparation Blank	С	м
Aluminum	-96.2	В	-85.9	В	-91.8	В	-101.6	В	-90.310	В	P
Antimony	4.7	U		υĮ	4.7	ט	4.7	Ū	4.700	υ	P
Arsenic	4.8	Ū	4.8	U	4.8	ט	4.8	U	4.800	U	P
Barium	5.9	U	5.9	U	5.9	U	5.9	U	5.900	ŭ	P
Beryllium	0.2	В	0.2	U	0.2	U	0.2	ט	0.200	U	P
Cadmium	0.6	U	0.6	U	0.6	U	0.6	Ū	0.600	U	P
Calcium	182.1	υ	182.1	U	182.1	U	182.1	U	182.100	บ	P
Chromium	1.4	U	1.4	ע	1.4	Ū	1.4	ע	1.400	U	P
Cobalt	2.0	ט	2.0	ט	2.0	Ū	2.0	Ū	2.000	U	P
Copper	2.4	ט	2.4	ָט	2.4	ַ	2.4	ט	2.400	U	P
Iron	-48.3	В	-44.0	В	-45.0	В	33.3	ט	-54.690	В	P
Lead	1.3	υ	1.3	<u>ע</u>	1.3	ט	1.9	В	1.300	U	P
Magnesium	178.3	U	178.3	ַ ט	178.3	U	178.3	ט	178.300	U	P
Manganese	0.7	U	0.7	ַע	0.7	U	0.7	ט	0.700	U	P
Nickel	2.1	U	2.1	ט	2.1	Ū	2.1	Ū	2.100	U	P
Potassium	393.0	U	393.0	ן ט	393.0	Ū	393.0	บ	393.000	U	P
Selenium	3.4	U	3.4	U	3.4	U	3.4	บ	3.400	U	P
Silver	2.2	U	2.2	ע	2.2	U	2.2	Ū	2.200	บ	P
Sodium	472.7	υ	472.7	_	472.7	U	472.7	บ	472.700	U	P
Thallium	5.7	บ	5.7	Ū	5.7	Ü	5.7	U	5.700	Ū	P
Vanadium	2.0	υ	2.0	U	2.0	Ū	2.0	U	2.000	U	P
Zinc	1.0	υ	1.0		1.0	ַ	1.0	ט	1.122	В	P

3 **BLANKS**

Lab Name: STL BURLINGTON Contract: 23046 Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Preparation Blank Matrix (soil/water): WATER

Analyte	Initial Calib. Blank (ug/L)	С		Co	ntinuing Blank 2		ation	C	SPLP WH 9/22/09 Preparation Blank	С	м
Aluminum	1	1	-90.0	В				T	-92.180	В	P
Antimony		1	4.7			11		j	4.700	U	P
Arsenic			4.8			ii			4.800	U	P
Barium			5.9			i i			5.900	U	P
Beryllium			0.2			i i			0.200	U	P
Cadmium			0.6			İi			0.600	U	P
Calcium			182.1			iii			385.800	В	₽
Chromium			1.4		· . -	ii			1.400	U	P
Cobalt			2.0	ַ					2.000	U	P
Copper			2.4	וטן					2.400	U	P
Iron			33.3	ן ט		İ			-49.810	В	P
Lead			1.3	וטן					1.547	В	P
Magnesium			178.3	ט		i i			178.300	U	P
Manganese			0.7	ט		İ			0.700	U	P
Mercury				<u> </u>		İl			10.000	U	CV
Nickel			2.1	וטן		İ			2.100	บ	P
Potassium			393.0	וט		ĪI			393.000	U	P
Selenium			3.4	וטן					3.400	U	P
Silver	Ĭ		2.2	ט		İİ			2.200	U	P
Sodium			472.7	ן ט ן		i i			6469.000		P
Thallium			5.7		.				5.700	U	P
Vanadium			2.0						2.000	U	P
Zinc			1.0						4.301	В	P

3 BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDS001-SPLP

Preparation Blank Matrix (soil/water): WATER

Initial Calib. Blank			Con	Preparation Blank						
Analyte	(ug/L)	С	1	С	2	C.	3	С	С	M
Mercury	0.	1 U	0.	1 미	0	1 U	0.	1 U	0.100 U	CV

3

BLANKS

Contract: 23046 Lab Name: STL BURLINGTON

Preparation Blank Matrix (soil/water): WATER

	Initial Calib. Blank			Continuing Calibration Blank (ug/L)							
Analyte	(ug/L)	С	1	С	2	С	3	C	Blank	С	M
Mercury			0.	1 0	0	. 1 ט		1			cv

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046 Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Preparation Blank Matrix (soil/water): WATER

Initial Calib. Blank			Riank (ng/la) (t						Preparation Blank	
Analyte	(ug/L)	С	1	С	2	С	3	C	C	М
Mercury	0.	1 U	0.	1 0	0	.1 U				CV

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures

Concentration Units: ug/L

	True	e	Init	ial Found		Fi	nal Found	
Analyte	Sol.A	Sol.AB	Sol.A	Sol.Al	8 %R	Sol.A	Sol.AE	8 %R
Aluminum	500000	477680	509600	513000.0	107.4	513500	514100.0	
Antimony	0	575	-3	630.2	109.6	-1	632.5	110.0
Arsenic	0	97	8	104.0	107.2	5	104.2	107.4
Barium	0	464	2	496.8	107.1	3	496.6	107.0
Beryllium	0	444	0	472.8	106.5	0	475.3	107.0
Cadmium	0	874	-1	925.2	105.9	-1	923.2	105.6
Calcium	500000	476380	491400	499900.0	104.9	493300	501100.0	105.2
Chromium	0	451	4	478.5	106.1	4	480.2	106.5
Cobalt	0	434	-1	456.9	105.3	-1	458.8	105.7
Copper	0	482	4	516.1	107.1	3	515.6	107.0
Iron	200000	192500	204000	202500.0	105.2	205200	203400.0	105.7
Lead	0	41	-1	44.9	109.5	3	45.0	109.8
Magnesium	500000	524140	540200	548000.0	104.6	542100	550100.0	105.0
Manganese	0	451	1	479.0	106.2	2	479.1	106.2
Nickel	0	876	1	926.4	105.8	2	930.4	106.2
Potassium	0	0	-76	-80.5		-86	-85.3	
Selenium	0	41	-7	40.8	99.5	-5	46.2	112.7
Silver	0	198	1	210.5	106.3	0	211.4	106.8
Sodium	0	0	-72	-158.7		-48	-225.8	
Thallium	0	83	-7	84.9	102.3	-3	88.5	106.6
Vanadium	0	464	2	494.5	106.6	2	495.4	106.8
Zinc	0	951	4	999.3	105.1	4	1001.0	105.3

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

IDOLBKSSS080.5SPLPS

Lab Name: STL BURLINGTON	Contract:	23046
--------------------------	-----------	-------

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Sample: 0.0

Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added (SA)	%R	Q	м
Arsenic	75 - 125	1111.0000		20.1500		1000.00	109.0		P
Barium	75 - 125	2202.0000		47.3300	В	2000.00	107.7		P
Cadmium	75 - 125	54.1400		0.6000	ט	50.00	108.3		P
Chromium	75 - 125	221.7000		1.7660	В	200.00	110.0		P
Copper	75 - 125	282.6000		4.9770	В	250.00	111.0		P
Lead	75 - 125	554.5000		1.7560	В	500.00	110.6		P
Mercury	75 - 125	85.9000		10.0000	U	100.00	85.9		CV
Nickel	75 - 125	546.5000		2.9540	В	500.00	108.7		P
Selenium	75 - 125	2113.0000		3.4000	U	2000.00	105.6		P
Silver	75 - 125	512.2000		2.2000	U	500.00	102.4		Р
Zinc	75 - 125	580.9000		24.4600		500.00	111.3		P

Comments:	

5B

POST DIGEST SPIKE SAMPLE RECOVERY SAMPLE NO.

IDOLBKSSS080.5SPLPA

Lab Name: STL BURL	INGTON	Contr	act: <u>23046</u>		
Lab Code: STLVT	Case No.: 23046	SAS		SDG No.:	IDS001-SPLP
Matrix (soil/water)	: WATER		Level (low/	med): LOW	

Concentration Units: ug/L

	· · · · · · · · · · · · · · · · · · ·			ion Units: ug/L				-	
Analyte	Control Limit %R	Spiked Sample Result (SSR)	С	Sample Result (SR)	С	Spike Added(SA)	%R	Q	М
Aluminum		5549.00		3489.00		2000.0	103.0		P
Antimony		525.30		7.16	В	500.0	103.6		P
Arsenic		53.83		20.15		40.0	84.2		P
Barium		1967.00		47.33	В	2000.0	96.0		P
Beryllium		49.53		0.20	ם	50.0	99.1		P
Cadmium		49.34		0.60	บ	50.0	98.7		P
Chromium		202.50		1.77	В	200.0	100.4		P
Cobalt		490.90		2.00	U	500.0	98.2		Р
Copper		259.20		4.98	В	250.0	101.7		P
Iron		3693.00		2663.00		1000.0	103.0		P
Lead		20.50		1.76	В	20.0	93.7		P
Manganese		585.50		87.79		500.0	99.5		P
Nickel		495.30		2.95	В	500.0	98.5		Р
Selenium		10.72		3.40	υ	10.0	107.2		P
Silver		31.81		2.20	υ	50.0	63.6		P
Thallium		43.80		5.70	U	50.0	87.6		P
Vanadium		501.70		4.66	В	500.0	99.4		P
Zinc		528.10		24.46		500.0	100.7		P

Comments:				
	 		 ·	

6 **DUPLICATES**

SAMPLE NO.

IDOLBKSSS080.5SPLPD

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Duplicate: 0.0

	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Ω	М
Aluminum		3489.0000		3665.0000		4.9		P
Antimony		7.1590	В	8.5150	В	17.3		P
Arsenic	10.0	20.1500		20.8400		3.4		P
Barium		47.3300	В	46.7500	В	1.2		P
Beryllium		0.2000	บ	0.2000	U			P
Cadmium		0.6000	U	0.6000	U			P
Calcium		2271.0000	В	2257.0000	В	0.6		P
Chromium		1.7660	В	1.6730	В	5.4		P
Cobalt		2.0000	ט	2.0000	U			P
Copper		4.9770	В	6.5800	В	27.7		P
Iron		2663.0000		2769.0000		3.9		P
Lead		1.7560	В	1.3670	В	24.9		P
Magnesium		405.9000	В	423.6000	В	4.3		P
Manganese		87.7900		90.4300		3.0		P
Mercury		10.0000	υ	10.0000	ŭ			CV
Nickel		2.9540	В	2.1000	U	200.0		P
Potassium		2501.0000	В	2595.0000	В	3.7		P
Selenium		3.4000	บ	3.4000	ט			P
Silver		2.2000	Ū	2.2000	ם			P
Sodium	5000.0	8579.0000		8864.0000		3.3		P
Thallium		5.7000	Ü	5.7000	U			P
Vanadium		4.6590	В	4.4840	В	3.8		P
Zinc	20.0	24.4600		23.6000		3.6		P

6

DUPLICATES

2	ΔN	1PI	 NO.	
Э.	-	151	 INO.	

LCSDW0909C	

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): WATER Level (low/med): LOW

% Solids for Duplicate: 0.0 % Solids for Duplicate: 0.0

	Control							
Analyte	Limit	Sample (S) C	Dı	uplicate (D)	С	RPD	Q	М
Aluminum		52100.00		51460.0	0	1.2		P
Antimony		2102.00		2066.0	0	1.7		P
Arsenic		1049.00		1042.0	0	0.7		P
Barium		499.80		493.2	ा	1.3		P
Beryllium		502.10		496.3	0	1.2		P
Cadmium		509.90		505.3	0	0.9		P
Calcium		50480.00		49990.0	0	1.0		Р
Chromium		499.30		493.7	0	1.1		P
Cobalt		490.70		484.9	0	1.2		P
Copper		516.50		508.2	0	1.6		P
Iron		52270.00		51660.0	0	1.2		P
Lead		1009.00		992.8	0	1.6		P
Magnesium		50890.00		50450.0	0	0.9		P
Manganese		495.80		489.3	0	1.3		P
Nickel		493.10		486.9	0	1.3		P
Potassium		50390.00		49720.0	0	1.3		P
Selenium		508.60		502.0	0	1.3		P
Silver		437.80		433.6	0	1.0		P
Sodium		52000.00		51160.0	0	1.6		P
Thallium		533.50		527.4	0	1.1		P
Vanadium		504.60		498.8	0	1.2		P
Zinc		501.80		491.8	0	2.0		P

7 LABORATORY CONTROL SAMPLE

Lab	Name:	STL BURLINGTO	ON		Contract:	23046			
Lab	Code:	STLVT	Case No.:	23046	SAS No.: _		SDG No.:	IDS001-SPLP	

Solid LCS Source:

Aqueous LCS Source: <u>Inorganic Ventures</u>

	Aqueou	ıs (ug/L)			Solid	. (1	ng/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	₽R
Aluminum	51000.0	52100.00	102.2					
Antimony	2000.0	2102.00	105.1				<u> </u>	
Arsenic	1050.0	1049.00	99.9					
Barium	500.0	499.80	100.0					
Beryllium	500.0	502.10	100.4				1	
Cadmium	525.0	509.90	97.1					
Calcium	50000.0	50480.00	101.0				<u> </u>	<u> </u>
Chromium	500.0	499.30	99.9				l	
Cobalt	500.0	490.70	98.1					
Copper	500.0	516.50	103.3					
Iron	50500.0	52270.00	103.5				<u> </u>	$oldsymbol{\perp}$
Lead	1015.0	1009.00	99.4				 	
Magnesium	50000.0	50890.00	101.8			<u> </u>		
Manganese	500.0	495.80	99.2				<u> </u>	
Nickel	500.0	493.10	98.6					
Potassium	50000.0	50390.00	100.8					
Selenium	525.0	508.60	96.9					
Silver	500.0	437.80	87.6					
Sodium	50000.0	52000.00	104.0]
Thallium	550.0	533.50	97.0					
Vanadium	500.0	504.60	100.9					
Zinc	500.0	501.80	100.4					

7 LABORATORY CONTROL SAMPLE

Lab Nam	e: STL BURLING	GTON		_ Contract: 23046				
Lab Cod	e: <u>STLVT</u>	_ Case No.:	23046	SAS No.:	SDG No.: IDS001-SPLP			
Solid L	CS Source:		_					

Aqueous LCS Source: <u>Inorganic Ventures</u>

Aqueous (ug/L)				Solid (m	g/kg)		
Analyte	True	Found	%R	True	Found C	Limits	%R
Mercury	1.00	0.91	91.0	1			

LABORATORY CONTROL SAMPLE

Lab Name:	STL BURLINGT	ON		Contract:	23046
Tab Code:	९ गग रागग	Case No	23046	SAS No ·	SDG No.: TDS001-SPLP

Solid LCS Source:

Aqueous LCS Source: <u>Inorganic Ventures</u>

	Aqueo	ıs (ug/L)	-		Solid	. (mg/kg)	
Analyte	True	Found	%R	True	Found	С	Limits	%R
Aluminum	51000.0	51460.00	100.9					
Antimony	2000.0	2066.00	103.3					
Arsenic	1050.0	1042.00	99.2				1	
Barium	500.0	493.20	98.6				l	
Beryllium	500.0	496.30	99.3]	
Cadmium	525.0	505.30	96.2					
Calcium	50000.0	49990.00	100.0					
Chromium	500.0	493.70	98.7					
Cobalt	500.0	484.90	97.0					
Copper	500.0	508.20	101.6	l			ł	
Iron	50500.0	51660.00	102.3					
Lead	1015.0	992.80	97.8					
Magnesium	50000.0	50450.00	100.9					
Manganese	500.0	489.30	97.9					
Nickel	500.0	486.90	97.4					
Potassium	50000.0	49720.00	99.4				l	
Selenium	525.0	502.00	95.6					
Silver	500.0	433.60	86.7				l	
Sodium	50000.0	51160.00	102.3					
Thallium	550.0	527.40	95.9					
Vanadium	J 500.0	498.80	99.8					
Zinc	500.0	491.80	98.4			ΪĪ		

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLBKSSS080.5SPLPL

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Matrix (soil/water): WATER Level (low/med): LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	С	Serial Dilution Result (S)	С	% Differ- ence	Q	м
Aluminum	3489.00		3091.00	\neg	11.4	E	₽
Antimony	7.16	В	23.50	U	100.0		P
Arsenic	20.15		28.23	В	40.1		P
Barium	47.33	В	49.37	В	4.3		P
Beryllium	0.20	U	1.00	ਹ			P
Cadmium	0.60	ט	3.00	ט			P
Calcium	2271.00	В	1894.00	В	16.6		P
Chromium	1.77	В	7.00	บ	100.0		P
Cobalt	2.00	ט	10.00	บ			P
Copper	4.98	В	12.00	U	100.0		P
Iron	2663.00		2476.00		7.0		P
Lead	1.76	В	6.50	U	100.0		P
Magnesium	405.90	В	891.50	U	100.0		P
Manganese	87.79		87.84		0.1		P
Nickel	2.95	В	10.50	U	100.0		P
Potassium	2501.00	В	2661.00	В	6.4		P
Selenium	3.40	U	17.00	U			P
Silver	2.20	Ū	11.00				P
Sodium	8579.00		8543.00	В	0.4		₽
Thallium	5.70	Ū	28.50	U			P
Vanadium	4.66	В	10.00	ט	100.0		P
Zinc	24.46	İ	30.73	В	25.6		P

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTO	Contract: 23046						
Lab Code: STLVT C	SAS No.: SDG No.: IDS001-SPLP						
ICP ID Number:			Date:	07/01/03	,		
Flame AA ID Number: <u>Le</u> Furnace AA ID Number: _	eman Hydra	AA					
	Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м	
	Mercury	253.70		0.2	0.10	CV	

Comments:

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDS001-SPLP
ICP ID Number: TJA ICAP 4	Date: 07/01/03	
Flame AA ID Number:		
Furnace AA ID Number:		

Analyte	Wave- length (nm)	Back- ground	CRDL (ug/L)	IDL (ug/L)	м
Aluminum	308.215		200	23.6	P
Antimony	206.838		60	4.7	P
Arsenic	189.042		10	4.8	P
Barium	493.409		200	5.9	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.6	P
Calcium	317.933		5000	182.1	P
Chromium	267.716		10	1.4	P
Cobalt	228.616		50	2.0	P
Copper	324.754		25	2.4	P
Iron	271.441		100	33.3	P
Lead	220.353		3	1.3	P
Magnesium	279.078		5000	178.3	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.1	P
Potassium	766.491		5000	393.0	P
Selenium	196.026		5	3.4	P
Silver	328.068		10	2.2	P
Sodium	330.232		5000	472.7	P
Thallium	190.864		10	5.7	P
Vanadium	292.402		50	2.0	P
Zinc	213.856		20	1.0	P

Comments:	 	 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: <u>STL</u>	BURLINGTON	Contract:	23046
----------------------	------------	-----------	-------

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave-	Т	interelement	Correction 1	Cactors for:	
Analyte	length		.ncereremenc	COLLECTION	actors for.	
MIALYCE	(nm)	Al	Ca	Fe	Mg	Ba
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	-0.0000600	0.0000000	0.0000000
Barium	493.41	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.000000	0.0008950	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.000000	0.0000330	0.0000000	0.000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	0.0004320
Copper	324.75	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Iron	271.44	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Lead	220.35	0.0006300	0.0000000	0.0000090	0.0000000	0.000000
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000200	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.03	0.0000000	0.0000000	-0.0000220	0.0000000	0.000000
Silicon	288.16	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Silver	328.07	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0000200	0.000000	-0.0000900	0.0000000	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.000000	0.0000490	0.0000000	0.000000
Zinc	213.86	0.0000250	0.000000	0.0000630	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: STI	L BURLINGTON	Contract:	23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave- length	Interelement Correction Factors for:				
Analyte	(nm)	Co	Cr	Cu	Mn	Мо
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0072400
Antimony	206.84	0.0000000	0.0111600	0.0000000	0.0000000	-0.0024800
Arsenic	189.04	0.0000000	0.0004700	0.0000000	0.0000000	0.0013380
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0001150	0.0000000	0.0000000	0.0000000	0.0001350
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	-0.0016380
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.1059800	0.0000000	0.0000000	0.0000000	0.0036200
Lead	220.35	-0.0022600	-0.0001190	0.0000000	0.0000000	-0.0007540
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	-0.0004300	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silicon	288.16	0.0000000	-0.0038600	0.0000000	0.0000000	-0.0042750
Silver	328.07	0.0000000	0.0000000	0.0000000	0.0000000	-0.0007920
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0032700	0.0002540	0.0000000	-0.008140	0.0000000
Tin	189.99	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	-0.0160000
Zinc	213.86	0.0000000	0.000000	0.0003300	0.0000000	0.0000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 23046

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave-	Interelement Correction Factors for:				
Analyte	length (nm)	Ni	Sb	Sn	v	Zn
Aluminum	308.22	0.0000000	0.0000000	0.1440400	0.0000000	0.000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Arsenic	189.04	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	313.04	0.0000000	0.0000000	.0.00000000	0.0006280	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.50	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Copper	324.75	0.0000000	0.0000000	0.0000000	-0.000192	0.0000000
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0237000	0.000000
Lead	220.35	0.0001240	-0.0002280	0.0000000	0.0005020	0.000000
Magnesium	279.08	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Molybdenum	202.03	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Selenium	196.03	0.0000000	0.0001660	0.0000000	0.0000000	0.000000
Silicon	288.16	0.0000000	0.000000	-0.1212200	0.0000000	0.000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.1177000
Thallium	190.86	0.0000000	0.000000	0.0000000	0.0025400	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	213.86	0.0052400	0.000000	0.0000000	0.0000000	0.000000

Comments:		 	

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	STL	BURLINGTON	Contract:	23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

ICP ID Number: TJA ICAP 4 Date: 07/01/03

Analyte	Integ. Time (Sec.)	Concentration (ug/L)	м
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	10000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	10000.0	P
Magnesium	10.00	500000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	10000.0	P
Potassium	10.00	100000.0	P
Selenium	10.00	5000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	5000.0	P

Comments:	

13 PREPARATION LOG

Lab	Name:	STL BURLINGTON	Contract:	23046

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
EBLKP8	08/14/03	1.0	100.0
IDOLBKSSS080.5SPLP	08/14/03	1.0	100.0
IDOLBKSSS080.5SPLPD	08/14/03	1.0	100.0
IDOLBKSSS080.5SPLPS	08/14/03	1.0	100.0
IDOLWPSSS030.5SPLP	08/14/03	1.0	100.0
IDOLWPSUS033.5SPLP	08/14/03	1.0	100.0
IDOLWPSUS18100SPLP	08/14/03	1.0	100.0
IDOLWPSUS185.5SPLP	08/14/03	1.0	100.0
LCSW0814G	08/14/03	100.0	100.0
PBW0814G	08/14/03	100.0	100.0

13 PREPARATION LOG

Lab Name: STL BURLINGTON Contract: 23046

Method: P

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
IDOLBKSSS080.5SPLP	09/09/03	100.0	100.0
IDOLBKSSS080.5SPLPD	09/09/03	100.0	100.0
IDOLBKSSS080.5SPLPS	09/09/03	100.0	100.0
IDOLWPSSS030.5SPLP	09/09/03	100.0	100.0
IDOLWPSUS033.5SPLP	09/09/03	100.0	100.0
IDOLWPSUS18100SPLP	09/09/03	100.0	100.0
IDOLWPSUS185.5SPLP	09/09/03	100.0	. 100.0
LCSDW0909C	09/09/03	100.0	100.0
LCSW0909C	09/09/03	100.0	100.0
PBW0909C	09/09/03	100.0	100.0
SPLPBLKP8	09/09/03	100.0	100.0

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/18/03 End Date: 09/18/03

EPA													A	na	ly	te	3										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	C	С	С	F	₽	M	М	Н	N	K	S	Α	N	T	V	Z	С
No.				L	В	s	A	E	D	A	R	0	U	E	В	G	N	G	I		E	G	A	L		N	N
s0	1.00	1304		х	Х	х	х	Х	х	х	Х	х	х	х	х	х	Х		х	Х	X	х	Х	Х	х	Х	_
S	1.00	1309		х						x				x		Х				X			Х				
S	1.00	1313			х	х									X						Х			Х			
S	1.00	1316					x	Х	X		X	x	x				X		Х			x			$ \mathbf{x} $	Х	
LRS	1.00	1321		х	Х	х	х	Х	X	x J	X	х	x	x	X	X	X		X	X	X	х	х	Х	х	x	1
LRS	1.00	1326		х	х	х	х	х	X	Х	X	х	Х	х	X	Х	Х		X	Х	X	х	х	Х	$ \mathbf{x} $	·x	
LRS	1.00	1331		х	х	х	Х	х	X	Х	X	х	х	х	Х	X	Х		X	X	Х	х	Х	Х	x	X	
ICV	1.00	1335		х	х	х	Х	х	X	x	X	x	x	х	X	X	X		Х	Х	X	X	Х	X	x	Х	
ICB	1.00	1340		х	Х	x	х	х	Х	х	Х	х	х	x	х	X	Х		х	X	х	х	х	Х	х	Х	_
ICSA	1.00	1345		х	х	х	х	Х	Х	х	х	х	х	х	X	X	Х		Х	X	х	х	х	Х	х	Х	_
ICSAB	1.00	1350		х	х	Х	х	X	Х	х	X	х	х	х	Х	X	Х		X	X	Х	х	х	X	х	X	
CRI	1.00	1354		х	х	х	х	х	Х	х	X	x	х	x	X	X	X		X	X	x	х	х	Х	x	x	_
CCV	1.00	1359		х	х	х	х	х	х	х	X	x	х	х	х	Х	X		X	X	X	x	х	Х	х	Х	
CCB	1.00	1404		х	х	х	х	х	Х	х	X	х	х	х	х	x	X		Х	X	Х	x	Х	х	$ \mathbf{x} $	х	_
PBW0909C	1.00	1408		х	х	х	х	Х	Х	х	Х	х	х	х	х	X	Х		Х	X	Х	х	Х	Х	х	Х	
LCSW0909C	1.00	1413		х	х	х	х	х	Х	х	Х	х	х	х	х	Х	Х		Х	Х	х	Х	x	Х	x	Х	_
LCSDW0909C	1.00	1418		х	х	х	х	х	Х	х	Х	х	х	х	Х	X	Х		Х	Х	Х	х	x	х	x	X	
IDOLWPSUS033.5SPLP	1.00	1423		x	х	х	х	Х	Х	Х	X	х	х	x	Х	X	X		Х	Х	X	x	Х	Х	x	X	_
IDOLWPSUS185.5SPLP	1.00	1428		Х	Х	Х	x	Х	X	Х	X	х	x	x	X	X	X		Х	X	X	x	х	x	x	Х	_
IDOLBKSSS080.5SPLP	1.00	1433		Х	Х	Х	x	х	Х	Х	X	х	x	x	X	X	X		X	Х	Х	Х	Х	Х	$ \mathbf{x} $	x	
IDOLBKSSS080.5SPLPL	5.00	1437		Х	Х	Х	X	Х	Х	х	Х	х	x	x	X	X	Х		X	X	X	x	Х	X	x	X	
IDOLBKSSS080.5SPLPA	1.00	1442		X	х	х	Х	X	X		Х	x	x	x	X		X		X		X	X		Х	x	x	
IDOLBKSSS080.5SPLPD	1.00	1446		X	х	Х	Х	Х	Х	Х	X	x	x	x	Х	X	X		X	Х	X	X	X	X	$ \mathbf{x} $	X	_
IDOLBKSSS080.5SPLPS	1.00	1451		Π		x	Х		Х		Х		x		X				X		Х	Х	L.	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	Ш	x	
ccv	1.00	1456		Х	Х	х	Х	х	Х	Х	Х	х	\mathbf{x}	х	Х	X	X		Х	Х	X	х	Х	X	x	X	_
ССВ	1.00	1501		x	Х	х	Х	х	х	х	X	х	х	х	Х	X	X		X	Х	X	x	x	х	x	Х	_
IDOLWPSUS18100SPLP	1.00	1505		х	х	х	Х	Х	х	х	X	х	х	х	х	x	Х		Х	X	Х	х	X	x	x	x	_
IDOLWPSSS030.5SPLP	1.00	1510		х	х	$ \mathbf{x} $	X	х	х	x	X	x		x	X		X		Х			X	ļ		-	X	
SPLPBLKP8	1.00	1515		x	х	х	Х	х	х	X	X	x	х	х	х	x	X		X	Х	X	X	х	X	х	Х	
ZZZZZZ	1.00	1520														<u> </u>					<u> </u>	L				Ц	
ZZZZZZ	1.00	1525																			L						_
ZZZZZZ	10.00	1529																			Ĺ	L				Ш	
ZZZZZZ	1.00	1534																			Ĺ	L				Ш	_
ZZZZZZ	10.00	1539											Ĺ													Ш	
ZZZZZZ	1.00	1543																			Ĺ					Ш	
ZZZZZZ	1.00	1548																								\coprod	_
ccv	1.00	1553		х	х	х	х	х	х	Х	Х	х	х	х	x	х	х		х	Х	X	x	х	Х	х	x	_
ССВ	1.00	1557		x	x	x	X	Х	X	X	X	x	lх	х	x	x	х		x	X	X	x	Х	X	x	X	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/18/03 End Date: 09/18/03

EPA													P	ma	ly	te	s										
Sample No.	D/F	Time	% R	A	S B	A S	B A		C D	C A		С 0			P B		M N	H G	N		S E	A G	ł	T L	l i	_	C N
ZZZZZZ	10.00	1602																									
ZZZZZZ	1.00	1607																									
ZZZZZZ	1.00	1611																									
ICSA	1.00	1616		x	Х	х	х	х	x	х	х	х	х	х	x	x	х		x	X	Х	х	\mathbf{x}	x	x	X	L
ICSAB	1.00	1621		x	x	х	Х	х	х	x	X	х	х	х	х	х	х		х	Х	х	х	х	Х	х	X	
CRI	1.00	1625		x	x	x	х	х	х	x	Х	х	х	х	х	х	х		х	X	Х	Х	х	Х	х	Х	
CCV	1.00	1630		x	x	х	x	х	х	x	Х	х	х	х	X	Х	х		X	X	х	х	Х	Х	х	X	
ССВ	1.00	1635		x	Х	x	х	х	x	x	Х			х					х	х	x	x	х	х	x	X	Ţ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDS001-SPLP

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 08/18/03 End Date: 08/18/03

EPA													2	ma	ly	te	s	- 11									
Sample	D/F	Time	% R	A	S	Α	В	В	С	С	С	С	С	F	P	М	М	н	N	к	S	A	N	T	v	Z	С
No.				L		s		E	ם	A	R		ซ			G		G	I		E	G	A	L			N
S0	1.00	1132																Х									
S0.2	1.00	1133																х									
S0	1.00	1135																х									
S0.2	1.00	1137																х									
S0.5	1.00	1139																Х									
S1	1.00	1140																Х									<u> </u>
S5	1.00	1142																х									
S10	1.00	1144		Π														Х									
ICV	1.00	1146																х									
ICB	1.00	1147		Π														х									
CRA	1.00	1149																х									
CCV	1.00	1151			Ī			Ī										х									<u> </u>
CCB	1.00	1152																Х	ij								
ZZZZZZ	1.00	1154						İ											Ī								_
ZZZZZZ	1.00	1156		Ī															Ī								Γ
ZZZZZZ	1.00	1158			İ					П								Ī								П	Γ
ZZZZZZ	1.00	1200								ΙÍ																П	Γ
ZZZZZZ	1.00	1202		Π														ĺ								П	Γ
ZZZZZZ	1.00	1204		Г	i													Ì									_
ZZZZZZ	1.00	1205		ĺ				Ī		П							П					Γ		Ì		П	Γ
ZZZZZZ	1.00	1207		Г															Ī								
ZZZZZZ	1.00	1209						İ																			Γ
CCV	1.00	1211											i					х								П	Γ
ССВ	1.00	1212						Π										х								П	Γ
ZZZZZZ	1.00	1214		Ī																							_
ZZZZZZ	1.00	1216																								\Box	Γ
ZZZZZZ	1.00	1217																	Ī								Γ
ZZZZZZ	1.00	1219																	Ī							П	Γ
ZZZZZZ	1.00	1221																								\sqcap	Γ
ZZZZZZ	1.00	1223				İ		Ī	Г	П							İ		Ī							П	Γ
ZZZZZZ	1.00	1225																								П	Γ
ZZZZZZ	1.00	1227		Π				Π																			Γ
ZZZZZZ		1228		Γ	<u> </u>			T														Γ				П	_
CCV	1.00	1230			<u> </u>				Ī									х					П			П	Γ
ССВ		1232						I^-	Γ									х						П		П	Γ
ZZZZZZ	1.00	1234		İ				İ	Ī				Ī														Γ
ZZZZZZ	1.00	1236		Γ	i		Г	T																			Γ
ZZZZZZ		1239		ĺ	Ì		<u> </u>	ĺ		П	<u> </u>	Π	i									<u> </u>					Γ

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 08/18/03 End Date: 08/18/03

EPA	······										7	na	1y	te	 									٦
Sample No.	D/F	Time	% R	A L	S B	A S	•	B E	 C A	 С 0			P B	M G	 H G	N	K	S E	A G	N A	T L	- 1		С И
ZZZZZZ	1.00	1240																					\Box	
ZZZZZZ	1.00	1242		Ī				l																_
PBW0814G	1.00	1244													Х									_
LCSW0814G	1.00	1246													Х									_
ZZZZZZ	1.00	1248																						_
ZZZZZZ	1.00	1250						,																_
ccv	1.00	1252													X									_
CCB	1.00	1254													Х						Ì		\prod	_
ZZZZZZ	1.00	1256																		oxed				
ZZZZZZ	1.00	1257																				$oldsymbol{ol}}}}}}}}}}}}}}}}}}$		_
ZZZZZZ	1.00	1259															•							_
ZZZZZZ	1.00	1301																					\perp	_
ZZZZZZ	1.00	1303																					$oldsymbol{\perp}$	_
IDOLWPSUS033.5SPLP	1.00	1305													Х									_
IDOLWPSUS185.5SPLP	1.00	1306													X					Ш			$oldsymbol{\perp}$	_
IDOLBKSSS080.5SPLP	1.00	1308													Х									_
IDOLBKSSS080.5SPLPS	1.00	1311													X									_
CCV	1.00	1312													Х									
CCB	1.00	1314													X								$oldsymbol{\perp}$	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: Leeman Hydra AA Method: CV

EPA													A	ına	lyt	te:	S										
Sample	D/F	Time	% R	A	s	Α	В	В	С	С	С	С	С	F	P	М	М	н	N	K	S	A	И	Т	v	Z	C
No.				L	В	s	A	E	ם	A	R	0	ַ	E	В	G	N	G	I		E	G	A	L		И	N
s0	1.00	1332																Х						·			
S0.2	1.00	1334																х									L
s0.5	1.00	1336																х									L
S1	1.00	1338																x									L
S5	1.00	1339																х									L
S10	1.00	1341																х									L
ICV	1.00	1343																х									
ICB	1.00	1345																Х									L
CRA	1.00	1347	-															х									
ccv	1.00	1349																х									
CCB	1.00	1350																Х									L
IDOLBKSSS080.5SPLPD	1.00	1352																x									L
IDOLWPSUS18100SPLP	1.00	1354										 						Х									L
IDOLWPSSS030.5SPLP	1.00	1356																Х									L
EBLKP8	1.00	1358																Х									L
ZZZZZZ	1.00	1400																									L
ZZZZZZ	1.00	1402																									L
ZZZZZZ	1.00	1404																									L
ZZZZZZ	1.00	1406																									
ZZZZZZ	1.00	1408																									L
ccv	1.00	1409																Х									L
CCB	1.00	1411		Π				Π					1		Π			Х						Ī			Γ

September 19, 2003

Ms. Jennifer Kindred EA Engineering 12011 Bellevue-Redmond Rd. Suite 200 Bellevue, WA 98005

Re: Laboratory Project No. 23046

Case No. 23046; SDG: IDV001

Dear Ms. Kindred:

Enclosed are the analytical results of samples received intact by Severn Trent Laboratories on July 25, 2003. Laboratory numbers have been assigned and designated as follows:

<u>Lab ID</u>	Client <u>Sample ID</u>	Sample <u>Date</u>	Sample <u>Matrix</u>
	Received: 07/25/03	ETR No: 94999	
535838	IDOLBGREPLT08RICE	07/22/03	Solid
535839	IDOLTAPLT10RICE	07/22/03	Solid
535839MS	IDOLTAPLT10RICEMS	07/22/03	Solid
535839DP	IDOLTAPLT10RICEREP	07/22/03	Solid
535840	IDOLTAPLT10100RICE	07/22/03	Solid
535841	IDOLWPPLT09RICE	07/22/03	Solid
535842	IDOLTAPLT11RICE	07/22/03	Solid
535860	EBLK		Water

Due to reporting software limitations, sample identifications may have been truncated. In most instances only punctuation was removed.

This narrative identifies anomalies that occurred during the analyses of samples in this delivery group. If there is no description following regarding a certain methodology requested on the chain-of-custody record, then there were no exceptions to the laboratory quality control criteria noted during that analysis.

Documentation that identifies the condition of the samples at the time of sample receipt and the issues arising at the time of sample log-in is included in the Sample Handling section of this submittal.

The plant samples were homogenized for analysis by the lab and after homogenization the tissue was maintained in frozen storage at -20 °C.

The results for the tissue samples are reported on a dry weight basis. In preparing the tissues, an equipment bank was generated in order to characterize the homogenization process. This

Ms. Jennifer Kindred September 19, 2003 Page 2 of 2

blank, identified as "EBLK", was carried through each of the analytical processes, using weighed amounts similar to the tissue amounts that were analyzed. The results have been reported on the same weight/weight basis as the tissue samples.

Metals by ICP / CVAA

The percent difference between the original determination and the serial dilution determination for potassium in sample IDOLTAPLT10RICE was 21.9 percent. This recovery is above the control criteria of ±10 percent. Matrix interference is suspected and results have been flagged with an "E" accordingly.

The recovery of cyanide from the laboratory fortified aliquot of sample IDOLTAPLT10RICE was 68.6 percent which is below the control limit of 75-100 percent. Corresponding sample results have been qualified with an "N" to denote this anomaly. Recovery from the post digestate spike proved acceptable as did recovery from the laboratory control sample.

If there are any questions regarding this submittal, please contact Jeannine McCrumb at (802) 655-1203.

This report shall not be reproduced, except in full, without the written approval of the laboratory. This report is sequentially numbered starting with page 0001 and ending with page

I certify that this package is in compliance with the NELAC requirements, both technically and for completeness, for other than the conditions detailed above. The release of the data contained in this hardcopy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Sincerely.

Michael F. Wheeler, Ph.D.

Laboratory Director

Enclosure MFW/jtw/jmm

STL Burlington Colchester, Vermont

Sample Data Summary Package

SDG: IDV001

TRENT STL SEVERN TRENT LABORATORIES, INC.

STL Burlington208 South Park Drive, Suite 1
Colchester, VT 05446 Tel 802 655 1203

CHAIN OF CUSTODY RECORD

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
- Wastewater W - Water S - Soir L - Liquid A - Air bag - 40 ml vial A/G - Amber / Or Glass 1 Lian 250 mi - Glass wide mouth	C - Charcoal Tube SL - S P/O - Plastic or other	Sludge 0 Oil STL cannot accept verbal changes. Please Fax written changes to	t verbal changes. ten changes to
Received by: (Signature) Date Tune Received by (Signature	Time	nt's delivery of samples constitutes a sand conditions contained in the Pr	Trent Laboratories
Relinquished by: (Signature) Date Turke the coert by (Signature)	Date Time	* 50s	1
15 (Stratural to 7/24/18 0900 Perend to Signature	Date Time 7/25/01	1	4004
14 LDD1-PD-55D-14-MS	I/I	X	"Market grant Street and the second
TDD1-60-850-14-100	XX	×.	
1-055-09-1001	3 X YX	*	
1 JDU-51-55D-05	3 N X X	×	
15 I I I I I I I I I I I I I I I I I I I	× ,	××	
		××	
TODL-TR-PLT-10-MS-RICE		XX	
1001-TA-PLT-10-100-RICE	×.	××	
1 1200-TA-PLT-10-RICE	X /	××	
X IDDI-EGIPE-PLT-D8-RICE	 		
C G G r Identifying Marks of Sample(s) VOA A/G 1.Lt.	OI DIG S	Cay	Semple ID (Lab Use Orth)
389.01-0002 Idol City Mine	No/Type of Containers! (5/9/2)	Their	
Sandurt: 60scr Sandlus (ABCV	Travip	70A77	
ntract/ Quote: 100c CITY MINE	<i>J</i>	non	Screened For Radioactivity
Fax: 435- 451- 7800 Fax:			intact N / Y
× 144			dy Seal
Bellewie Lut 18005			2 3 4 5
TEWE-REDMOND RO. Address:		Ter	Temp. of coolers
Company: S	REQUESTED	ma /	Due Date:
Report to:	ANALYSIS	ret	Lab Use Only

Sample Data Summary Package For Wet Chemistry

Sample Report Summary

Client Sample No.

IDOLBGREPLT08RICE

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535838

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 35.7

Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
Solids, Percent	07/29/03	N/A	%	1.0		35.7	
	Parameter Solids, Percent		Parameter Run Date Batch Solids, Percent 07/29/03 N/A	Parameter Run Date Batch Units Solids, Percent 07/29/03 N/A %	Parameter Run Date Batch Units DF Sollds, Percent 07/29/03 N/A % 1.0	Parameter Run Date Batch Units DF RL Solids, Percent 07/29/03 N/A % 1.0	Parameter Run Date Batch Units DF RL Conc. Solids, Percent 07/29/03 N/A % 1.0 35.7

Sample Report Summary

Client Sample No.

IDOLTAPLT10RICE

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535839

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 41.8

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		41.8	
		,						
					,			
1				1 .		L		

Duplicate Sample Report Summary

Client Sample No.

IDOLTAPLT10RICEREP

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535839DP

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 41.0

Method	Parameter	Analytical Run Date	Analytical Batch	Units	Samı Resi Conc.	ole ult Qual.	Duplic Sample Conc.	cate Result Qual.	RPD*
IN623	Solids, Percent	07/29/03	N/A	%	41.8		41.0		2
							ē		
							i		
						i			
<u> </u>								·	

^{*} Control Limit for RPD is +/- 20%, unless otherwise specified.

Sample Report Summary

Client Sample No.

IDOLTAPLT10100RICE

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535840

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 38.7

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		38.7	
					:			
		1				,		

Sample Report Summary

Client Sample No.

IDOLWPPLT09RICE

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535841

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 40.4

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual.
IN623	Solids, Percent	07/29/03	N/A	%	1.0		40.4	
							-	
						!		

Sample Report Summary

Client Sample No.

IDOLTAPLT11RICE

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535842

Matrix: SOLID

Client: EASEAT

Date Received: 07/25/03

% Solids: 36.1

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
IN623	Solids, Percent	07/29/03	N/A	%	1.0		36.1	
						-		
						!		
								İ
İ								

Sample Report Summary

Client Sample No.
EBLK

Lab Name: STL BURLINGTON

Contract:

SDG No.: IDV001

Lab Code: STLVT

Case No.: 23046

Lab Sample ID: 535860

Matrix: WATER

Client: EASEAT

Date Received: 07/25/03

% Solids: 0.0

Method	Parameter	Analytical Run Date	Analytical Batch	Units	DF	RL	Conc.	Qual
IN623	Solids, Percent	07/29/03	N/A	%	1.0		0.0	
								i i
					:			

Sample Data Summary Package For Metals

COVER PAGE - INORGANIC ANALYSES DATA PACKAGE

Lab Code: STL	.VT	SAS No.:	SDC N	o.: <u>IDV001</u>	
		SAS NO	_ SDG N	J <u>IDVOUI</u>	
SOW No.: ILM	104.1				
	EPA Sample No.	Lab Sample II	o		
	EBLK	535860			
	IDOLBGREPLT08RICE	535838			
	IDOLTAPLT10100RICE	535840		•	
	IDOLTAPLT10RICE	535839			
	IDOLTAPLT10RICED	535839DP		•	
	IDOLTAPLT10RICES	535839MS			
	IDOLTAPLT11RICE	535842	···		
	IDOLWPPLT09RICE	535841			
			•		
			•		
Were ICP int	terelement corrections applied?			Yes/No Y	ES
Were ICP bac	ekground corrections applied?			Yes/No Y	ES
	were raw data generated before				
applica	ation of background corrections?			Yes/No No)
Comments:					
			·····		
	·				
	-	licas with the town		nditions s	f the
	at this data package is in composith technically and for completer				
	ease of the data contained in the				carrea
	dable data submitted on diskette				· Y
	the Manager's designee, as verif:				· 4
		<u>-</u>	,		
a: .		Name:			
Signature: _		Hame.			
Date:		Title:			

COVER PAGE - IN

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name:	STL BURLINGTON		Contract:	23046		
Lab Code:	<u>STLVT</u> Case	No.: 23046	SAS No.:		SDG No.:	IDV001
Matrix (so	il/water): <u>TISSUE</u>		Lab	Sample ID:	535860	
Level (low	/med): LOW		Dat	e Received:	07/25/03	

% Solids: 100.0

CAS No.	· Analyte	Concentration	С	Q	М
7429-90-5	Aluminum	2.4	U		P
7440-36-0	Antimony	0.47	שן		P
7440-38-2	Arsenic	0.48	שן		P
7440-39-3	Barium	0.59	שן		P
7440-41-7	Beryllium	0.020	שן		P
7440-43-9	Cadmium	0.060	U		P
7440-70-2	Calcium	18.2	ען		P
7440-47-3	Chromium	0.14	שן		P
7440-48-4	Cobalt	0.20	U		P
7440-50-8	Copper	0.24	שן	ļ	P
7439-89-6	Iron	3.3	ΙŪ]	P
7439-92-1	Lead	0.32			P
7439-95-4	Magnesium	17.8	ט		P
7439-96-5	Manganese	0.070	U	1	P
7439-97-6	Mercury	0.016	שן		cv
7440-02-0	Nickel	0.21	טן	1	P
7440-09-7	Potassium	39.3	U	E	P
7782-49-2	Selenium	0.34	ש		P
7440-22-4	Silver	0.22	שן		P
7440-23-5	Sodium	72.2	В		P
7440-28-0	Thallium	0.57	U		P
7440-62-2	Vanadium	0.20	ַטן		P
7440-66-6	Zinc	0.20	В		P
57-12-5	Cyanide	0.50	ען	И	AS

Color Before:	colorless	Clarity Before:	clear	Texture:
Color After:	colorless	Clarity After:	clear	Artifacts:
Comments:			· · · · · · · · · · · · · · · · · · ·	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

TDOT	DCDFDT.	ምስ ያ ₽ተሮጅ

Lab Name:	STL BURLINGTO	N		Contract:	23046	·	
Lab Code:	STLVT	Case No.:	23046	SAS No.		SDG No.:	IDV001
Matrix (so	il/water): <u>T</u>	SSUE		Lak	Sample ID:	535838	
Level (low,	med): LOW	··· ·		Dat	e Received:	07/25/03	

% Solids: 100.0

CAS No.	Analyte	Concentration	С	Ω	М
7429-90-5	Aluminum	41.3			P
7440-36-0	Antimony	0.47	U		P
7440-38-2	Arsenic	0.48	ט		P
7440-39-3	Barium	70.1			P
7440-41-7	Beryllium	0.020	ש		P
7440-43-9	Cadmium	0.060	ש		P
7440-70-2	Calcium	6930			P
7440-47-3	Chromium	0.18	В	ŀ	P
7440-48-4	Cobalt	0.20	שן		P
7440-50-8	Copper	1.6	B		P
7439-89-6	Iron	47.8		ĺ	P
7439-92-1	Lead	0.22	B	-	P
7439-95-4	Magnesium	991			P
7439-96-5	Manganese	22.4		İ	P
7439-97-6	Mercury	0.029	B		CV
7440-02-0	Nickel	0.21	טן		P
7440-09-7	Potassium	5740	1	E	P
7782-49-2	Selenium	0.42	В	1	P
7440-22-4	Silver	0.22	Įυ		P
7440-23-5	Sodium	89.7	B		P
7440-28-0	Thallium	0.57	U		P
7440-62-2	Vanadium	0.20	U	1	P
7440-66-6	Zinc	7.5	1		P
57-12-5	Cyanide	0.50	U	и	AS

Color Before:	green	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
-			MR 174 - 164		

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

TDOLTAPLT10100RI	CE				

Lab Name: STI	L BURLINGTON	Contract: 23046	
Lab Code: STI	LVT Case No.: 23046	SAS No.:	SDG No.: IDV001
Matrix (soil/	water): TISSUE	Lab Sample ID:	535840
Level (low/med	d): <u>LOW</u>	Date Received:	07/25/03
% Solids: 100	0.0		

CAS No.	Analyte	Concentration	С	Ω	М
7429-90-5	Aluminum	59.5			P
7440-36-0	Antimony	0.44	שן		P
7440-38-2	Arsenic	0.45	ען		P
7440-39-3	Barium	71.4		<u> </u>	P
7440-41-7	Beryllium	0.019	ע		P
7440-43-9	Cadmium	0.057	U		P
7440-70-2	Calcium	6700			P
7440-47-3	Chromium	0.39	В		P
7440-48-4	Cobalt	0.19	ט		P
7440-50-8	Copper	1.9	В		P
7439-89-6	Iron	68.6			P
7439-92-1	Lead	0.41			P
7439-95-4	Magnesium	1030		<u> </u>	P
7439-96-5	Manganese	47.7			P
7439-97-6	Mercury	0.018	В]	CV
7440-02-0	Nickel	0.20	ט		P
7440-09-7	Potassium	5650		E	P
7782-49-2	Selenium	0.45	В		P
7440-22-4	Silver	0.21	U		P
7440-23-5	Sodium	74.1	B		P
7440-28-0	Thallium	0.54	ט	1	P
7440-62-2	Vanadium	0.19	ט		P
7440-66-6	Zinc	12.1			P
57-12-5	Cyanide	0.50	ַ ע	N	AS

Color Before:	green	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:	and the state of t			. <u>.</u> .	

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLTA	PLT1	ORICE

Lab Name:	STL BURLINGTON	(Contract:	23046		
Lab Code:	STLVT Case	No.: 23046	_ SAS No.:		SDG No.:	IDV001
Matrix (soi	.l/water): <u>TISSUE</u>		Lab	Sample ID:	535839	
Level (low/	med): <u>LOW</u>		Dat	e Received:	07/25/03	

% Solids: 100.0

	T Annitute	Concentration	С	0	м
CAS No.	Analyte	Concentration		~	
7429-90-5	Aluminum	66.7			P
7440-36-0	Antimony	0.45	טן		P
7440-38-2	Arsenic	0.46	שן	1	P
7440-39-3	Barium	72.3	T		P
7440-41-7	Beryllium	0.019	טן	ł	P
7440-43-9	Cadmium	0.057	U		P
7440-70-2	Calcium	7470			P
7440-47-3	Chromium	0.18	В		P
7440-48-4	Cobalt	0.19	U		P
7440-50-8	Copper	1.9	В		P
7439-89-6	Iron	68.2]	P
7439-92-1	Lead	0.40	l		P
7439-95-4	Magnesium	1100	İ	1	P
7439-96-5	Manganese	50.1	_		P
7439-97-6	Mercury	0.021	B	l	CA
7440-02-0	Nickel	0.20	טן		P
7440-09-7	Potassium	5870		E	P
7782-49-2	Selenium	0.48			P
7440-22-4	Silver	0.21	U		P
7440-23-5	Sodium	65.7	B		P
7440-28-0	Thallium	0.54	טן		P
7440-62-2	Vanadium	0.19	U		P
7440-66-6	Zinc	11.7			P
57-12-5	Cyanide	0.47	U	N	AS

Color Before	: green	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:	****				

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

IDOLTAPLT1	L1RICE

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 2304	6 SAS No.:	SDG No.: IDV001
Matrix (soil/water): TISSUE	Lab Sample ID:	535842
Level (low/med): LOW	Date Received:	07/25/03

% Solids: 100.0

CAS No.	Analyte	Concentration	С	·Q	М
7429-90-5	Aluminum	56.4]	P
7440-36-0	Antimony	0.43	טן		P
7440-38-2	Arsenic	0.44	טן	1	P
7440-39-3	Barium	23.1			P
7440-41-7	Beryllium	0.018	ט	ļ	P
7440-43-9	Cadmium	0.054	טן		P
7440-70-2	Calcium	5150			P
7440-47-3	Chromium	0.15	В		P
7440-48-4	Cobalt	0.18	ט		P
7440-50-8	Copper	1.3	В		P
7439-89-6	Iron	65.3			P
7439-92-1	Lead	0.29			P
7439-95-4	Magnesium	827			P
7439-96-5	Manganese	23.1		1	P
7439-97-6	Mercury	0.023	B	1	cv
7440-02-0	Nickel	0.19	ע		P
7440-09-7	Potassium	5570		E	P
7782-49-2	Selenium	0.31	שן	1.	P
7440-22-4	Silver	0.20	שן		P
7440-23-5	Sodium	54.5	В	1	P
7440-28-0	Thallium	0.52	ט		P
7440-62-2	Vanadium	0.18	טן		P
7440-66-6	Zinc	8.6			P
57-12-5	Cyanide	0.50	ען	И	AS

Color Before:	green	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:					
_					

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	 _
IDOLWPPLT09RICE	

Lab Name: STL	BURLINGTON	Contract: 23046	
Lab Code: STL	VT Case No.: 23046	SAS No.:	SDG No.: IDV001
Matrix (soil/w	ater): TISSUE	Lab Sample ID:	535841
Level (low/med): LOW	Date Received:	07/25/03

% Solids: 100.0

CAS No. Analyte Concentration C Q M 7429-90-5 Aluminum 74.0 P 7440-36-0 Antimony 0.47 U P 7440-38-2 Arsenic 0.48 U P 7440-39-3 Barium 2.6 B P 7440-41-7 Beryllium 0.020 U P 7440-43-9 Cadmium 0.060 U P 7440-70-2 Calcium 5950 P P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-48-4 Cobalt 0.20 U P 7439-89-6 Iron 201 P 7439-99-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P			-T	Τ_		
7440-36-0 Antimony 0.47 U P 7440-38-2 Arsenic 0.48 U P 7440-39-3 Barium 2.6 B P 7440-41-7 Beryllium 0.020 U P 7440-43-9 Cadmium 0.060 U P 7440-70-2 Calcium 5950 P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7440-02-0 Nickel 0.26 B P 7440-02-0 Nickel 0.26 B P 7440-22-4 Silver 0.22 U P 7440-23-5 S	CAS No.	Analyte	Concentration	c	Q	^M
7440-38-2 Arsenic 0.48 U P 7440-39-3 Barium 2.6 B P 7440-41-7 Beryllium 0.020 U P 7440-43-9 Cadmium 0.060 U P 7440-43-9 Cadmium 0.060 U P 7440-47-3 Chromium 5950 P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7440-02-0 Nickel 0.26 B P 7440-02-0 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440	7429-90-5	Aluminum	74.0		1	P
7440-39-3 Barium 2.6 B P 7440-41-7 Beryllium 0.020 U P 7440-43-9 Cadmium 0.060 U P 7440-70-2 Calcium 5950 P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P	7440-36-0	Antimony	0.47	U	1	P
7440-41-7 Beryllium 0.020 U P 7440-43-9 Cadmium 0.060 U P 7440-70-2 Calcium 5950 P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7440-02-0 Nickel 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-29-0 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-66-6 <	7440-38-2	Arsenic	0.48	ע		P
7440-43-9 Cadmium 0.060 U P 7440-70-2 Calcium 5950 P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7440-02-0 Nickel 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-66-6 Zinc 11.0 P	7440-39-3	Barium	2.6	В		P
7440-70-2 Calcium 5950 P 7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-66-6 Zinc 11.0 P	7440-41-7	Beryllium	0.020	U		P
7440-47-3 Chromium 0.35 B P 7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7440-29-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-66-6 Zinc 11.0 P	7440-43-9	Cadmium	0.060	ע		P
7440-48-4 Cobalt 0.20 U P 7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7440-70-2	Calcium	5950	1	<u> </u>	P
7440-50-8 Copper 1.6 B P 7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7440-47-3	Chromium	0.35	В		P
7439-89-6 Iron 201 P 7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7440-48-4	Cobalt	0.20	U	<u> </u>	P
7439-92-1 Lead 0.88 P 7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7440-50-8	Copper	1.6	В	1	P
7439-95-4 Magnesium 1680 P 7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7439-89-6	Iron	201			P
7439-96-5 Manganese 321 P 7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7439-92-1	Lead	0.88		<u> </u>	P
7439-97-6 Mercury 0.016 U CV 7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7439-95-4	Magnesium	1680			P
7440-02-0 Nickel 0.26 B P 7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7439-96-5	Manganese	321			P
7440-09-7 Potassium 4390 E P 7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-66-6 Zinc 11.0 P	7439-97-6	Mercury	0.016	U	1	CV
7782-49-2 Selenium 0.46 B P 7440-22-4 Silver 0.22 U P 7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7440-02-0	Nickel	0.26	B	†	P
7440-22-4 Silver 0.22 U P	7440-09-7	Potassium	4390		E	P
7440-23-5 Sodium 85.5 B P 7440-28-0 Thallium 0.57 U P 7440-62-2 Vanadium 0.20 U P 7440-66-6 Zinc 11.0 P	7782-49-2	Selenium	0.46	В		P
7440-28-0	7440-22-4	Silver	0.22	U		P
7440-62-2 Vanadium	7440-23-5	Sodium	85.5	В		P
7440-66-6 Zinc 11.0 P	7440-28-0	Thallium	0.57	U		P
	7440-62-2	Vanadium	0.20	U		P
57-12-5 Cyanide 0.50 U N AS	7440-66-6	Zinc	11.0			P
	57-12-5	Cyanide	0.50	ע	N	AS

Color Before:	green	Clarity Before:		Texture:	medium
Color After:	pale yellow	Clarity After:	clear	Artifacts:	
Comments:				···-	

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLING	TON		Contract: <u>23046</u>		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDV001
Initial Ca	alibration S	ource: Inorga	nic Vent	cures/Fisher		
Continuin	g Calibratio	n Source: SPE	X/Fisher			

Concentration Units: ug/L

	Initial (Continuing Calibration						
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	М
Cyanide	120.0	127.66 106.4	150.0	149.12	99.4	152.7	1 101.8	AS

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Na:	me: S	TL BURLINGTO	N	Cc	ntract: 23046		
Lab Co	de: S	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDV001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Cyanide			150.0	152.68	101.8	155.2	6 103.5	AS

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial	Calibratio	on.	Continuing Calibration					
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found 5	%R(1)	м
Aluminum	26000.0	26330.00	101.3	30200.0	30240.00	100.1	30060.00	99.5	P
Antimony	250.0	249.70	99.9	300.0	302.70	100.9	299.30	99.8	P
Arsenic	250.0	246.30	98.5	100.0	99.94	99.9	99.63	99.6	P
Barium	500.0	493.90	98.8	200.0	200.20	100.1	199.10	99.6	P
Beryllium	500.0	502.70	100.5	100.0	99.53	99.5	99.21	99.2	P
Cadmium	500.0	491.60	98.3	100.0	98.98	99.0	97.96	98.0	P
Calcium	25000.0	25550.00	102.2	30200.0	30360.00	100.5	30140.00	99.8	P
Chromium	500.0	499.10	99.8	200.0	198.20	99.1	197.40	98.7	P
Cobalt	500.0	492.40	98.5	200.0	199.50	99.8	197.50	98.8	P
Copper	500.0	502.10	100.4	200.0	203.40	101.7	201.60	100.8	P
Iron	25500.0	26450.00	103.7	30200.0	30290.00	100.3	30090.00	99.6	P
Lead	1000.0	986.90	98.7	400.0	391.20	97.8	388.30	97.1	P
Magnesium	25000.0	25510.00	102.0	30200.0	30050.00	99.5	29790.00	98.6	P
Manganese	500.0	493.00	98.6	200.0	199.10	99.6	198.30	99.2	P
Nickel	500.0	496.40	99.3	200.0	197.70	98.8	196.40	98.2	P
Potassium	25000.0	26240.00	105.0	30200.0	31290.00	103.6	31160.00	103.2	Р
Selenium	250.0	243.30	97.3	100.0	97.12	97.1	95.85	95.8	P
Silver	500.0	499.20	99.8	100.0	100.80	100.8	101.30	101.3	P
Sodium	25000.0	25040.00	100.2	30200.0	29470.00	97.6	29330.00	97.1	P
Thallium	250.0	234.10	93.6	100.0	92.12	92.1	92.15	92.2	P
Vanadium	500.0	496.00	99.2	200.0	199.30	99.6	198.50	99.2	P
Zinc	500.0	502.00	100.4	200.0	203.50	101.8	201.90	101.0	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTON	Contract:	23046
-----------	----------------	-----------	-------

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial Ca	librati	on		Continuing	Calibr	ation		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	м
Aluminum				30200.0	29940.00	99.1	30360.00	100.5	P
Antimony	1			300.0	297.40	99.1	300.10	100.0	P
Arsenic				100.0	99.10	99.1	99.43	99.4	P
Barium	[200.0	198. 1 0	99.0	199.60	99.8	P
Beryllium	l <u> </u>			100.0	98.96	99.0	99.21	99.2	P
Cadmium	l			100.0	97.94	97.9	98.17	98.2	P
Calcium]	30200.0	29880.00	98.9	30200.00	100.0	P
Chromium				200.0	196.30	98.2	197.10	98.6	P
Cobalt			1	200.0	197.10	98.6	197.40	98.7	P
Copper				200.0	201.30	100.6	203.00	101.5	P
Iron				30200.0	29930.00	99.1	30090.00	99.6	P
Lead			<u> </u>	400.0	388.30	97.1	388.40	97.1	P
Magnesium				30200.0	29690.00	98.3	29840.00	98.8	Р
Manganese				200.0	197.20	98.6	198.60	99.3	P
Nickel	l <u> </u>			200.0	195.80	97.9	196.80	98.4	P
Potassium	l			30200.0	30990.00	102.6	31270,00	103.5	P
Selenium				100.0	100.10	100.1	98.70	98.7	P
Silver				100.0	100.30	100.3	100.70	100.7	Р
Sodium				30200.0	29110.00	96.4	29410.00	97.4	Р
Thallium				100.0	94.14	94.1	93.09	93.1	P
Vanadium				200.0	197.10	98.6	197.70	98.8	P
Zinc				200.0	201.00	100.5	201.10	100.6	P

⁽¹⁾ Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2A INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab	Name: _	STL BURLINGT	ON	c	Contract: 23046		
Lab	Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDV001

Initial Calibration Source: Inorganic Ventures/Fisher

Continuing Calibration Source: SPEX/Fisher

Concentration Units: ug/L

	Initial (Calibration	Continuing Calibration					
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м
Mercury	3.0	2.73 91.0	5.0	4.93	98.6	4.7	7 95.4	cv

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name:	STL BURLINGTO	Ŋ	C	ontract: 23046		
Lab Code:	STLVT	Case No.:	23046	SAS No.:	SDG No.:	IDV001
Initial Cal	ibration Sour	ce: <u>Inorga</u>	nic Venture	s/Fisher		
Continuing	Calibration S	Source: SPE	X/Fisher			

Concentration Units: ug/L

	Initia	1 Calibration	Continuing Calibration								
Analyte	True	Found %R(1)	True	Found	%R(1)	Found	%R(1)	м			
Mercury	1		5.0	4.87	97.4	4.8	35 97.0	cv			

(1) Control Limits: Mercury 80-120; Other Metals 90-110; Cyanide 85-115

2B-IN CRDL STANDARD FOR AA AND ICP

Lab Name:	STL BURLINGTON	Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

					CRDL Standard for ICP Initial Final						
Analyte	True	Found	%R		True	Found	%R	Found	%R		
Aluminum					400.0	576.50	144.1	600.80	150.2		
Antimony					120.0	121.80	101.5	123.20	102.7		
Arsenic					20 .0	21.96	109.8	19.91	99.6		
Barium .					400.0	394.10	98.5				
Beryllium	i .				10.0	10.29	102.9	10.39	103.9		
Cadmium					10.0	10.42	104.2	10.37	103.7		
Calcium					10000.0	10510.00	105.1	10610.00	106.1		
Chromium	Î				20.0	25.05	125.2	26.05	130.2		
Cobalt					100.0	97.75	97.8	98.17	98.2		
Copper	İ				50.0	51.21	102.4	51.85	103.7		
Iron	Ì				200.0	319.40	159.7	342.30	171.2		
Lead				1	6.0	6.39	106.5	5.92	98.7		
Magnesium					10000.0	10280.00	102.8	10360.00	103.6		
Manganese					30.0	30.81	102.7	31.15	103.8		
Nickel					80.0	82.92	103.6	82.91	103.6		
Potassium					10000.0	10900.00	109.0	11000.00	110.0		
Selenium					10.0	10.67	106.7	10.07	100.7		
Silver			1		20.0	21.05	105.2	20.59	103.0		
Sodium	i			Ì	10000.0	10060.00	100.6	10200.00	102.0		
Thallium	İ				20.0	15.15	75.8	13.14	65.7		
Vanadium	1		<u> </u>		100.0	99.87	99.9	99.83	99.8		
Zinc					40.0	41.51	103.8	41.85	104.6		

Control Limits: no limits have been established by EPA at this time

2B-IN

CRDL STANDARD FOR AA AND ICP

Lab Name: STL BURLINGTON Contract: 23046

AA CRDL Standard Source: Inorganic Ventures

ICP CRDL Standard Source: Inorganic Ventures

Concentration Units: ug/L

				CRDL Standard for ICP						
				Init	Fina	ıl				
Analyte	True	Found	%R	True	Found &R	Found	%R			
Mercury	0.2	0.17	85.0							

Control Limits: no limits have been established by EPA at this time

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDV001

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank	Calib.			tinuing Blank	Preparation Blank					
Analyte	(ug/L)	c	1	С	2	С	3	C	C	M	<u>ч</u>
Cyanide	10.	이 ʊ	10.	[ט]ס	10.	[ט [ס	10.	0 U	0.500 U	Α	s

3

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

	Initial Calib. Blank			Cont	tinuino Blank	Preparation					
Analyte	(ug/L)	C	1	С	2	С	3	С		С	М
Cyanide			10.	. 0 U							AS

3 STANIKS

BLANKS

Lab Name: STL BURLINGTON Contract: 23046

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

 Analyte	Initial Calib. Blank (ug/L)	C	. 1	ontinuing Ca Blank (ug	Preparation Blank	C	м				
_				C	23.6	C	3 23.6	C U	 	U	P
Aluminum	23.6					\perp		<u>. </u>	2.300		<u> </u>
Antimony	4.7		4.7		4.7	U	4.7	U	0.470	U	P
Arsenic	4.8		4.8		4.8	ַט	4.8	ט	0.400	U	P
Barium	5.9		5.9	ַ	5.9	ט	5.9	U	0.330	U	P
Beryllium	0.2	ט	0.2	U	0.2	U	0.2	U	0.020	U	P
Cadmium	0.6	U	0.6	ט	0.6	וט	0.6	U	0.060	U	P
Calcium	182.1	U	182.1	U	182.1	U	182.1	ט	18.210	U	P
Chromium	1.4	Ū	1.4	U	1.4	U	1.4	U	0.140	υ	P
Cobalt	2.0	Ū	2.0	U	2.0	ט	2.0	U	0.200	บ	P
Copper	2.4	U	2.4	U	2.4	U	2.4	Ū	0.240	U	P
Iron	33.3	Ū	33.3	U	33.3	U	33.3	U	3.330	Ū	P
Lead	1.5	В	1.3	ט	1.3	U	1.3	U	0.148	В	P
Magnesium	178.3	U	178.3		178.3	U	178.3	บ	17.830	บ	P
Manganese	0.7	U	0.7	U	0.7	U	0.7	ט	0.070	U	P
Nickel	2.1	U	2.1	U	2.1	U	2.1	บ	-0.250	В	P
Potassium	393.0	Ū	393.0	ַ	393.0	U	393.0	ט	39.300	Ū	P
Selenium	3.4	Ū	3.4	U	3.4	U	3.4	ט	0.340	U	P
Silver	2.2	Ū	2.2	U	2.2	ט	2.2	U	0.220	U	P
Sodium	472.7	U	472.7		472.7	U	472.7	บ	83.850	В	P
Thallium	5.7	Ŭ	5.7	Ū	5.7	U	5.7	U	-0.865	В	P
Vanadium	2.0	U	2.0	U	2.0	U	2.0	บ	0.200	U	P
Zinc	1.0	U	1.0	U	1.0	ט	1.0	U	0.245	В	P

3 RLANKS

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDV001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Analyte	Initial Calib.	_	Continuing Calibration Blank (ug/L) C 1 C 2 C 3 C								м
	(ug/L)	С	1	С	2	<u> </u>	J	C		<u></u>	
Aluminum			23.6								P
Antimony			4.7							<u> </u>	₽
Arsenic			4.8		-						P
Barium			5.9					<u> </u>			P
Beryllium			0.2	U						1	P
Cadmium			0.6	U						1	₽
Calcium			182.1	וט				- 1			P
Chromium			1.4	וט				1			P
Cobalt			2.0	וט						1	P
Copper			2.4	U			_				P
Iron			33.3	<u>ט</u>		ii]]	P
Lead			1.3	<u>י</u>		i i				1	P
Magnesium		Ti Ti	178.3	U							P
Manganese			0.7			i i		1			P
Nickel		11	2.1			11		1			P
Potassium		Ti Ti	393.0					1			P
Selenium		11	3.4			11					P
Silver		1 1	2.2					i			P
Sodium		1 i	472.7		· · · · · · · · · · · · · · · · · · ·	i i		Ī		1	P
Thallium		- 	5.7			<u> </u>					P
Vanadium	ĺ	1 1	2.0							1	P
Zinc		1 1	1.0			 		Ī	,		P

3

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDV001

Preparation Blank Matrix (soil/water): SOIL

Preparation Blank Concentration Units (ug/L or mg/kg): MG/KG

	Initial Calib. Blank	Calib		Cont	Preparation Blank					
Analyte	(ug/L)	С	1	C .	2	C ·	3	С	С	М
Mercury	0.	. 1 U	0.	.1 U	0	וט 1	0.	1 U	0.017 U	CV

3 DI ANIZO

BLANKS

 Lab Name:
 STL BURLINGTON
 Contract:
 23046

 Lab Code:
 STLVT
 Case No.:
 23046
 SAS No.:
 SDG No.:
 IDV001

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): UG/L

Initial Calib. Blank			Continuing Calibration Blank (ug/L)					Preparation Blank			
Analyte	(ug/L)	С	1	C	2	С	3	С		С	М
Mercury			0.	1 B							cv

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: <u>STLVT</u> Case No.: <u>23046</u> SAS No.: _____ SDG No.: <u>IDV001</u>

ICP ID Number: TJA ICAP 4 ICS Source: Inorganic Ventures

Concentration Units: ug/L

	Trı	16	Init	ial Found		Fir	nal Found			
Analyte	Sol.A	Sol.AB	Sol.A	Sol.A	3 %R	Sol.A	Sol.AB	%R		
Aluminum	500000	477680	499300	502500.0	105.2	502800	506000.0	105.9		
Antimony	0	575	-4	599.9	104.3	-1	596.3	103.7		
Arsenic	0	97	4	100.4	103.5	4	102.8	106.0		
Barium	0	464	2	494.0	106.5	2	493.8	106.4		
Beryllium	0	444	0	469.5	105.7	0	469.2	105.7		
Cadmium	0	874	. 0	925.8	105.9	0	921.4	105.4		
Calcium	500000	476380	488800	496200.0	104.2	486500	494500.0	103.8		
Chromium	0	451	3	476.4	105.6	3	475.3	105.4		
Cobalt	0	434	0	454.8	104.8	-1	452.9	104.4		
Copper	0	482	4	511.9	106.2	4	513.2	106.5		
Iron	200000	192500	198400	199100.0	103.4	197600	198300.0	103.0		
Lead	0	41	-3	39.4	96.1	-2	41.1	100.2		
Magnesium	500000	524140	530100	538500.0	102.7	526700	535600.0	102.2		
Manganese	0	451	1	476.8	105.7	2	476.3	105.6		
Nickel	0	876	0	925.9	105.7	0	919.9	105.0		
Potassium	0	0	-86	-106.4		-100	-107.5			
Selenium	0	41	1	43.3	105.6	-2	42.0	102.4		
Silver	0	198	1	210.8	106.5	0	211.9	107.0		
Sodium	0	0	-77	-232.9		-61	-97.7			
Thallium	0	83	-10	84.0	101.2	-11	79.2	95.4		
Vanadium	0	464	0	489.6	105.5	-1	488.5	105.3		
Zinc	0	951	6	994.3	104.6	6	988.4	103.9		

5A

SPIKE SAMPLE RECOVERY

SAMPLE NO.

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): TISSUE Level (low/med): LOW

% Solids for Sample: 100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

Analyte	Control	Spiked Sample	С	Sample	С	Spike	%R	Q	м
	Limit %R	Result (SSR)		Result (SR)		Added (SA)		×	-
Aluminum	75 - 125	279.3397		66.6667	1	188.68	112.7		P
Antimony	75 - 125	48.1887		0.4476	U	47.17	102.2		P
Arsenic	 75 - 125	3.6783		0.4571	ש	3.77	97.6		P
Barium	75 - 125	272.6415		72.2762		188.68	106.2		P
Beryllium	75 - 125	4.7811		0.0190	ប	4.72	101.3		P
Cadmium	75 - 125	4.7566		0.0571	U	4.72	100.8		P
Chromium	75 - 125	19.7170		0.1806	В	18.87	103.5		P
Cobalt	75 - 125	46.8302		0.1905	U	47.17	99.3		₽
Copper	75 - 125	27.0755		1.8886	В	23.58	106.8		P
Iron	75 - 125	173.8680		68.1810		94.34	112.0		P
Lead	75 - 125	2.1840		0.4011		1.89	94.3		P
Manganese	75 - 125	96.7925		50.1143		47.17	99.0		P
Mercury	75 - 125	0.1459		0.0207	В	0.16	78.2		CV
Nickel	75 - 125	46.0000		0.2000	[ט	47.17	97.5		P
Selenium	75 - 125	1.2066		0.4809		0.94	77.2		P
Silver	75 - 125	4.8340		0.2095	ប	4.72	102.4		P
Thallium	75 - 125	3.8991		0.5429	ט	4.72	82.6		P
Vanadium	75 - 125	48.7830		0.1905	บ	47.17	103.4		P
Zinc	75 - 125	60.5660		11.6857		47.17	103.6		P
Cyanide	75 - 125	3.4282		0.4717	U	5.00	68.6	N	AS

Comments:			

5B POST DIGEST SPIKE SAMPLE RECOVERY

SAMPLE NO.

TDOT.	TADI.	ጥ1 ሰው	ICEA
TOOL	IMPL	TION	TCEM

Lab Name: STL BURLIN	GTON	_ Contr	act: <u>23046</u>		
Lab Code: STLVT	Case No.: 23046	SAS		SDG No.:	IDV001
Matrix (soil/water):	फर द दास <u>.</u>		Level (low/	med): LOW	

Concentration Units: ug/L

	Control	Spiked Sample		Sample		Spike			
Analyte	Limit %R	Result (SSR)	С	Result (SR)	С	Added (SA)	%R	Q	М
Aluminum		2824.00		700.00		2000.0	106.2		P
Antimony		512.40		4.70	Ū	500.0	102.5		P
Arsenic		31.40		4.80	ט	40.0	78.5		P
Barium		2775.00		758.90		2000.0	100.8		P
Beryllium		50.91		0.20	บ	50.0	101.8		P
Cadmium		50.56		0.60	U	50.0	101.1		P
Chromium		210.30		1.90	В	200.0	104.2		P
Cobalt		501.30		2.00	บ	500.0	100.3		P
Copper		288.90		19.83	В	250.0	107.6		P
Iron		1745.00		715.90		1000.0	102.9		P
Lead		22.81		4.21		20.0	93.0		₽
Manganese		1026.00		526.20		500.0	100.0		P
Nickel		488.80		2.10	υ	500.0	97.8		P
Selenium		12.95		5.05		10.0	79.0		P
Silver		51.79		2.20	U	50.0	103.6		P
Thallium		45.09		5.70	บ	50.0	90.2		P
Vanadium		521.60		2.00	U	500.0	104.3		P
Zinc		628.90		122.70		500.0	101.2		P
Cyanide		23.30		10.00	บ	20.0	116.5		AS

Comments:			

U

DUPLICATES

SAMPLE NO.

IDOLTA	PLT10R	CED	

Lab Name:	STL BURLINGTON	Contract: 23046

Matrix (soil/water): TISSUE Level (low/med): LOW

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	Control							
Analyte	Limit	Sample (S)	С	Duplicate (D)	С	RPD	Q	М
Aluminum	19.0	66.6667		68.1238		2.2		P
Antimony		0.4476	U	0.4476	U			P
Arsenic		0.4571	U	0.4571	U			P
Barium	19.0	72.2762		78.8190		8.7		P
Beryllium		0.0190	ע	0.0190	U			P
Cadmium		0.0571	U	0.0571	ŭ			P
Calcium		7470.4771		8099.0479		8.1		P
Chromium		0.1806	В	0.1575	В	13.7		P
Cobalt		0.1905	U	0.1905	บ			P
Copper		1.8886	В	2.1410	В	12.5		P
Iron		68.1810		70.9714		4.0		P
Lead	0.3	0.4011		0.3768		6.2		P
Magnesium	476.2	1098.0950		1106.6670		0.8		P
Manganese		50.1143		46.3333		7.8		P
Mercury		0.0207	В	0.0161	U	200.0		CV
Nickel		0.2000	U	0.2000	ซ			P
Potassium		5869.5239		6108.5718		4.0		P
Selenium		0.4809		0.3801	В	23.4		P
Silver		0.2095	U	0.2095	Ū			P
Sodium		65.7333	В	70.9524	В	7.6		P
Thallium		0.5429	Ū	0.5429	บ			P
Vanadium		0.1905	U	0.1905	Ū			P
Zinc		11.6857		14.0095		18.1		P
Cyanide		0.4717	U	0.5000	ט			AS

LABORATORY CONTROL SAMPLE

Lab	Name:	STL BURLINGTO	NO		Contract:	23046	
Lab	Code:	STLVT	Case No.:	23046	SAS No.: _		SDG No.: IDV001

Solid LCS Source: <u>Environmental Express</u>

Aqueous LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)					
Analyte	True	Found	%R	True	Found C	Limits	%R		
Cyanide		·		6.0	6.3	5.4	6.6 105.0		

7 LABORATORY CONTROL SAMPLE

Lab Name: STL BURLINGTON Co	ontract:	23046
-----------------------------	----------	-------

Solid LCS Source: Environmental Express

Aqueous LCS Source:

	Aqueou	s (ug/L)			Solid	(mg/kg)		
Analyte	True	Found	%R	True	Found C	Limi	ts	%R
Aluminum			1	200.0	205.4	160.0	240.0	102.7
Antimony				50.0	51.7	40.0	60.0	103.4
Arsenic				24.0	24.1	19.2	28.8	100.4
Barium				200.0	202.3	160.0	240.0	101.2
Beryllium				5.0	5.1	4.0	6.0	102.0
Cadmium				25.0	25.4	20.0	30.0	101.6
Calcium				2000.0	2121.0	1600.0	2400.0	106.0
Chromium				20.0	21.0	16.0	24.0	105.0
Cobalt	Ì			50.0	50.4	40.0	60.0	100.8
Copper				25.0	26.8	20.0	30.0	107.2
Iron			I	100.0	110.7	80.0	120.0	110.7
Lead				22.0	21.9	17.6	26.4	99.5
Magnesium				2000.0	2042.0	1600.0	2400.0	102.1
Manganese				50.0	51.5	40.0	60.0	103.0
Nickel				50.0	50.4	40.0	60.0	100.8
Potassium		ļ		2000.0	2065.0	1600.0	2400.0	103.2
Selenium				21.0	20.4	16.8	25.2	97.1
Silver			1	25.0	23.2	20.0	30.0	92.8
Sodium				2000.0	2054.0	1600.0	2400.0	102.7
Thallium				25.0	24.4	20.0	30.0	97.6
Vanadium				50.0	52.0	40.0	60.0	104.0
Zinc		ĺ	1	50.0	51.5	40.0	60.0	103.0

LABORATORY CONTROL SAMPLE

Lab Name: STL BURLINGTON Contract: 23046

Solid LCS Source: Environmental Express

Aqueous LCS Source:

	Aqueous	(ug/L)		Solid (mg/kg)						
Analyte	True	Found	%R	True	Found C	Limits	₹R			
Mercury				0.1	0.1	0.1	0.1 100.0			

9 ICP SERIAL DILUTIONS

SAMPLE NO.

IDOLTAPLT10RICEL

Lab Name: STL BURLINGTON Contract: 23046

Matrix (soil/water): TISSUE Level (low/med): LOW

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	n	Serial Dilution Result (S)	С	% Differ- ence	Q	м
Aluminum	700.00		642.50	В	8.2		P
Antimony	4.70	ן ט	23.50	ט			₽
Arsenic	4.80	ט	24.00	ט			P
Barium	758.90		735.70	В	3.1	1	P
Beryllium	0.20	U	1.00	Ū		Ī	Р
Cadmium	0.60	ט	3.00	U		1	P
Calcium	78440.00		77150.00		1.6	ĺ	P
Chromium	1.90	В	7.00	U	100.0		P
Cobalt	2.00	ט	10.00	U			P
Copper	19.83	В	21.03	В	6.1	Ì	P
Iron	715.90	İ	733.70		2.5		P
Lead	4.21	İ	6.50	Ū	100.0	ĺ	P
Magnesium	11530.00	İ	11460.00	В	0.6		P
Manganese	526.20	İ	523.60		0.5		P
Nickel	2.10	<u> </u>	10.50	ט			P
Potassium	61630.00	İ	75120.00		21.9	E	P
Selenium	5.05		17.00	Ū	100.0	<u> </u>	P
Silver	2.20	<u></u>	11.00	Ū			P
Sodium	690.20	В	2363.50	U	100.0]	P
Thallium	5.70	<u></u> ד	28.50	U		İ	P
Vanadium	2.00	<u>י</u>	10.00	ט	1		P
Zinc	122.70	i	129.20	П	5.3		P

10

INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTO	ON		Contrac	t: <u>23046</u>			
Lab Code: STLVT C	ase No.: 230	046	SAS No.	:	_ SDG	No.	: IDV001
ICP ID Number:		<u></u>	Date:	07/01/03			
Flame AA ID Number: <u>La</u>	chat Cyanid	<u>e</u>					
Furnace AA ID Number:							
	Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	PQL (ug/L)	М	
	Cyanide	,		10	10.0	AS	

Comments:

INSTRUMENT DETECTION LIMITS (QUARTERLY)

10

Lab Name: STL BURLINGT	ON		Contrac	t: <u>23046</u>			
Lab Code: STLVT C	Case No.: 23	046	SAS No.	:	SDG	SDG No.	:_IDV001
ICP ID Number:			Date:	07/01/03			
Flame AA ID Number: <u>Le</u>	eeman Hydra	AA					
Furnace AA ID Number: _	· · · · ·						
	Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	(ug/L)		
	Mercury	253.70		0.2	0.10	CV	

Comments:

10 INSTRUMENT DETECTION LIMITS (QUARTERLY)

Lab Name: STL BURLINGTON	Contract: 23046	
Lab Code: STLVT Case No.: 23046	SAS No.:	SDG No.: IDV001
ICP ID Number: TJA ICAP 4	Date: 07/01/03	
Flame AA ID Number:		
Furnace AA ID Number:		

Analyte	Wave- length (nm)	Back- ground	PQL (ug/L)	PQL (ug/L)	м
Aluminum	308.215		200	23.6	₽
Antimony	206.838		60	4.7	P
Arsenic	189.042	-	10	4.8	P
Barium	493.409		200	5.9	P
Beryllium	313.042		5	0.2	P
Cadmium	226.502		5	0.6	₽
Calcium	317.933		5000	182.1	P
Chromium	267.716		10	1.4	P
Cobalt	228.616		50	2.0	P
Copper	324.754		25	2.4	P
Iron	271.441		100	33.3	P
Lead	220.353		3	1.3	P
Magnesium	279.078		5000	178.3	P
Manganese	257.610		15	0.7	P
Nickel	231.604		40	2.1	Р
Potassium	766.491		5000	393.0	P
Selenium	196.026		5	3.4	P
Silver	328.068		10	2.2	P
Sodium	330.232		5000	472.7	P
Thallium	190.864		10	5.7	P
Vanadium	292.402		50	2.0	P
Zinc	213.856		20	1.0	P

Comments:			
	4.44	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

ab Name: STL BURLINGTON	Contract: 23046	
-------------------------	-----------------	--

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave-	I	nterelement	Correction 1	Factors for:	·
Analyte	length (nm)	Al	Ca	Fe	Mg	Ba
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Antimony	206.84	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Arsenic	189.04	0.0000000	0.0000000	-0.0000600	0.0000000	0.0000000
Barium	493.41	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0008950	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.000000	0.0000330	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	0.0004320
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Lead	220.35	0.0006300	0.000000	0.0000090	0.0000000	0.0000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000200	0.0000000
Molybdenum	202.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	-0.0000220	0.0000000	0.000000
Silicon	288.16	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.86	0.0000200	0.000000	-0.0000900	0.0000000	0.0000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.000000	0.0000490	0.0000000	0.000000
Zinc	213.86	0.0000250	0.000000	0.0000630	0.0000000	0.000000

Comments:	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab	Name: SI	TL BURLINGTON	Contract:	23046

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave- length		Interelement	Correction I	Factors for:	
Analyte	(nm)	Co	Cr	Cu	Mn	Мо
Aluminum	308.22	0.0000000	0.0000000	0.0000000	0.0000000	0.0072400
Antimony	206.84	0.0000000	0.0111600	0.0000000	0.0000000	-0.0024800
Arsenic	189.04	0.0000000	0.0004700	0.0000000	0.0000000	0.0013380
Barium	493.41	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Beryllium	313.04	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Boron	249.68	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Cadmium	226.50	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Calcium	317.93	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Chromium	267.72	0.0001150	0.0000000	0.0000000	0.0000000	0.0001350
Cobalt	228.62	0.0000000	0.0000000	0.0000000	0.0000000	-0.0016380
Copper	324.75	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Iron	271.44	0.1059800	0.0000000	0.0000000	0.0000000	0.0036200
Lead	220.35	-0.0022600	-0.0001190	0.0000000	0.0000000	-0.0007540
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Manganese	257.61	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Nickel	231.60	-0.0004300	0.0000000	0.0000000	0.0000000	0.0000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Silicon	288.16	0.0000000	-0.0038600	0.0000000	0.0000000	-0.0042750
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	-0.0007920
Sodium	330.23	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Thallium	190.86	0.0032700	0.0002540	0.0000000	-0.008140	0.0000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.0000000
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	-0.0160000
Zinc	213.86	0.0000000	0.000000	0.0003300	0.0000000	0.0000000

Comments:	u	**************************************	 	 	 	

11A ICP INTERELEMENT CORRECTION FACTORS (ANNUALLY)

Lab Name: STL BURLINGTON Contract: 23046

ICP ID Number: TJA ICAP 4 Date: 06/30/03

	Wave-		[nterelement	Correction 1	Factors for:	
Analyte	length					
Anaryte	(nm)	Ni	Sb	Sn	v	Zn
Aluminum	308.22	0.0000000	0.0000000	0.1440400	0.0000000	0.000000
Antimony	206.84	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Arsenic	189.04	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Barium	493.41	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Beryllium	313.04	0.0000000	0.000000	0.0000000	0.0006280	0.000000
Boron	249.68	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cadmium	226.50	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Calcium	317.93	0.0000000	0.0000000	0.0000 000	0.0000000	0.000000
Chromium	267.72	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Cobalt	228.62	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Copper	324.75	0.0000000	0.0000000	0.0000000	-0.000192	0.000000
Iron	271.44	0.0000000	0.0000000	0.0000000	0.0237000	0.000000
Lead	220.35	0.0001240	-0.0002280	0.0000000	0.0005020	0.000000
Magnesium	279.08	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.61	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Molybdenum	202.03	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.60	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.49	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000
Selenium	196.03	0.0000000	0.0001660	0.0000000	0.0000000	0.000000
Silicon	288.16	0.0000000	0.000000	-0.1212200	0.0000000	0.000000
Silver	328.07	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Sodium	330.23	0.0000000	0.000000	0.0000000	0.0000000	0.1177000
Thallium	190.86	0.0000000	0.000000	0.0000000	0.0025400	0.000000
Tin	189.99	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Vanadium	292.40	0.0000000	0.000000	0.0000000	0.0000000	0.000000
Zinc	213.86	0.0052400	0.000000	0.0000000	0.0000000	0.000000

Comments:	 	 	 	

12 ICP LINEAR RANGES (QUARTERLY)

Lab	Name:	STL	BURLINGTON	Contract:	23046
עטע	name.	سندن	DOMETHOTOM	001102000	

ICP ID Number: TJA ICAP 4 Date: 07/01/03

Analyte	Integ. Time	Concentration (ug/L)	
L	(Sec.)	(-3,-,	M
Aluminum	10.00	1000000.0	P
Antimony	10.00	100000.0	P
Arsenic	10.00	5000.0	P
Barium	10.00	10000.0	P
Beryllium	10.00	5000.0	P
Cadmium	10.00	5000.0	P
Calcium	10.00	600000.0	P
Chromium	10.00	100000.0	P
Cobalt	10.00	100000.0	P
Copper	10.00	10000.0	P
Iron	10.00	1000000.0	P
Lead	10.00	10000.0	P
Magnesium	10.00	500000.0	P
Manganese	10.00	10000.0	P
Nickel	10.00	10000.0	P
Potassium	10.00	100000.0	P
Selenium	10.00	5000.0	P
Silver	10.00	2000.0	P
Sodium	10.00	100000.0	P
Thallium	10.00	5000.0	P
Vanadium	10.00	100000.0	P
Zinc	10.00	5000.0	P

Comments:	

13

PREPARATION LOG

Lab	Name:	STL BURLINGT	ON	Contract:	23046		
Lab	Code:	STLVT	Case No.: 23046	SAS No.:		SDG No.:	IDV001

Method: AS

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
EBLK	08/04/03	1.01	50.0
ICV	08/04/03	50.0	50.0
IDOLBGREPLT08RICE	08/04/03	1.01	50.0
IDOLTAPLT10100RICE	08/04/03	1.00	50.0
IDOLTAPLT10RICE	08/04/03	1.06	50.0
IDOLTAPLT10RICED	08/04/03	1.00	50.0
IDOLTAPLT10RICES	08/04/03	1.00	50.0
IDOLTAPLT11RICE	08/04/03	1.00	50.0
IDOLWPPLT09RICE	08/04/03	1.01	50.0
LCS0804B	08/04/03	1.00	50.0
PBS0804B	08/04/03	1.00	50.0

13 PREPARATION LOG

Lab	Name:	STL BURLINGTO	NC.	Contract:	23046	
Lab	Code:	STLVT	Case No.: 23046	SAS No.:	SDG No.:	IDV001

Method: CV

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
EBLK	08/13/03	0.63	100.0
IDOLBGREPLT08RICE	08/13/03	0.62	100.0
IDOLTAPLT10100RICE	08/13/03	0.63	100.0
IDOLTAPLT10RICE	08/13/03	0.60	100.0
IDOLTAPLT10RICED	08/13/03	0.62	100.0
IDOLTAPLT10RICES	08/13/03	0.64	100.0
IDOLTAPLT11RICE	08/13/03	0.67	100.0
IDOLWPPLT09RICE	08/13/03	. 0.63	100.0
LCSS0813B	08/13/03	1.00	100.0
PBS0813B	08/13/03	0.60	100.0

13 PREPARATION LOG

Lab	Name:	STL BURLINGTO	ON	Contract:	23046	
Lab	Code:	STLVT	Case No.: 23046	SAS No.:	SDG No.:	IDV001

Method: P

EPA Sample No.	Preparation Date	Initial Volume mL	Volume (mL)
EBLK	08/20/03	1.00	100.0
IDOLBGREPLT08RICE	08/20/03	1.00	100.0
IDOLTAPLT10100RICE	08/20/03	1.06	100.0
IDOLTAPLT10RICE	08/20/03	1.05	100.0
IDOLTAPLT10RICED	08/20/03	1.05	100.0
IDOLTAPLT10RICES	08/20/03	1.06	100.0
IDOLTAPLT11RICE	08/20/03	. 1.10	100.0
IDOLWPPLT09RICE	08/20/03	1.00	100.0
LCSS0820D	08/20/03	1.00	100.0
PBS0820D	08/20/03	1.00	100.0

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/04/03 End Date: 08/04/03

EPA													7	ına	1y	te	s										
Sample	D/F	Time	% R	A	s	A	В	В	С	С	С	С	С	F	P	M	М	H	N	K	S	A	N	Т			
No.				L	В	s	A	E	D	A	R	0	υ	E	В	G	И	G	I		E	G	A	L		N	N
S0	1.00	1538																								\Box	Х
S10	1.00	1539																			L					Ш	X
S30	1.00	1540																							Ш	Ш	x
S50	1.00	1541						Ī.,													L	<u> </u>		L		Ш	X
S100	1.00	1542																								Ш	X
S200	1.00	1543						L												·					Ш	Ц	X
S300	1.00	1544																			L	<u> </u>					X
ICV	1.00	1546												_							<u> </u>			<u> </u>	Ш	Ш	X
ICB	1.00	1547										Ш												L		Ш	Х
LRS	1.00	1548																						L		Ш	X
LRS	1.00	1549						<u> </u>			L					<u> </u>							L.	_	Ш	Ш	X
CCV	1.00	1550					<u> </u>															<u> </u>					Х
CCB	1.00	1551														L									Ш		Х
PBS0804B	1.00	1552																						L	Ш		Х
LCS0804B	1.00	1553			İ	j –																	L	L	Ш		X
ZZZZZZ	1.00	1554		Ì	ĺ																L				Ш		
IDOLBGREPLT08RICE	1.00	1555					1																		$oxed{oxed}$	\square	Х
IDOLTAPLT10RICE	1.00	1556																							Ш	Ш	X
IDOLTAPLT10RICED	1.00	1557												L										<u> </u>	Ш	Ш	X
IDOLTAPLT10RICES	1.00	1558				l											Ш					<u> </u>	L		Ш	Ш	Х
IDOLTAPLT10100RICE	1.00	1559									Ì		L	<u> </u>										L			X
IDOLWPPLT09RICE	1.00	1600																				<u> </u>					Х
IDOLTAPLT11RICE	1.00	1601				1	1				<u> </u>												L	L		Ш	Х
CCV	1.00	1602																					L	L			X
CCB	1.00	1602		Π										<u> </u>												Ш	X
EBLK	1.00	1603																			L		L	L		\bigsqcup	Х
ZZZZZZ	1.00	1604			Ī												<u> </u>				L				Ш	Ш	L
ZZZZZZ	1.00	1605					1									L								L			
ZZZZZZ	1.00	1606													<u> </u>								L				L
ZZZZZZ	1.00	1607													<u> </u>	L								L			L
ZZZZZZ	1.00	1608												_				L			L	L					L
ZZZZZZ	1.00	1609											L		L	_			<u> </u>		L						L
ZZZZZZ	1.00	1610																		<u> </u>		L	<u>L</u>	L			L
ZZZZZZ	1.00	1611			L					L							L			L			L		$oldsymbol{\perp}$		L
ZZZZZZ	1.00	1612																							L		L
CCV	1.00	1613						L					L							L	<u>L</u>			<u> </u>	丄		ĹΧ
CCB	1.00	1614					L															L	<u> </u>		<u>L</u>		K
ZZZZZZ	1.00	1615		1			Γ									}		1						l			

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Instrument ID Number: Lachat Cyanide QC8000 Method: AS

Start Date: 08/04/03 End Date: 08/04/03

EPA													7	ına	ly	te	s							
Sample No.	D/F	Time	% R	A L	S B	A S	B A	B E		C A	1	С 0		1		M G	M N	H G		S E	A G	T L	 Z N	_
ZZZZZZ	1.00	1616		T																				
ZZZZZZ	1.00	1617		Ī												L								
IDOLTAPLT10RICEA	1.00	1618																						X
ZZZZZZ	1.00	1619																						_
CCV	1.00	1620		Ì	Ì				Π															X
ССВ	1.00	1621		T																		·		X

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/12/03 End Date: 09/13/03

start Date. <u>03/12/0</u>																											
EPA													A	na	1y	te	s										
Sample	D/F	Time	% R	A	S	A	В	В	С	С	С	С	С	F	P	M	М	Н	N	K	S	Α	И	T	V	Z	С
No.				L	В	s	A	E	D	A	R	0	บ	E	В	G	N	G	I		E	G	A	L		N :	И
S0	1.00	2145	-	Х	х	х	x	Х	Х	x.	Х	х	х	х	х	x	Х	j	х	X	х	x	Х	х	х	х	
S	1.00	2149		х						x				х		Х				X			Х				_
S	1.00	2153			Х	х									Х						X			X			_
S	1.00	2157					x	Х	Х		Х	х	х				Х		х			х			x	Х	_
LRS	1.00	2202		х	х	х	х	х	Х	Х	Х	х	х	х	х	Х	х	T	х	X	X	х	Х	X	х	Х	_
LRS	1.00	2207		х	Х	Х	Х	Х	Х	x	Х	x	х	х	х	Х	х		х	X	X	х	Х	X	х	X	_
LRS	1.00	2212		х	х	х	х	Х	Х	х	Х	х	х	х	Х	X	Х		х	X	x	x	Х	X	х	X	_
ICV	1.00	2216		х	Х	х	х	Х	Х	Х	х	х	х	х	х	X	х		х	Х	X	x	Х	X	x	X	
ICB	1.00	2221		х	х	х	х	Х	х	х	х	х	х	х	х	Х	Х		х	X	х	x	Х	X	x	X	_
ICSA	1.00	2226		х	Х	Х	X	Х	х	Х	Х	х	х	х	х	Х	Х		х	X	х	х	Х	Х	$ \mathbf{x} $	x	_
ICSAB	1.00	2231		Х	х	Х	Х	Х	Х	Х	Х	х	х	х	х	Х	х		Х	X	X	х	Х	X	х	x	_
CRI	1.00	2235		x	Х	Х	X	Х	Х	Х	Х	х	х	х	X	Х	Х		Х	Х	X	х	Х	X	х	X	_
CCV	1.00	2240		X	Х	Х	Х	Х	Х	X	Х	х	х	х	Х	Х	х		Х	X	X	X	Х	X	х	x	_
ССВ	1.00	2245		x	х	х	X	Х	Х	Х	Х	х	х	х	Х	X	х		Х	х	X	X	х	X	$ \mathbf{x} $	x	_
PBS0820D	1.00	2250		x	Х	х	Х	Х	х	Х	Х	x	х	x	Х	X	Х		Х	X	X	Х	Х	Х	х	X	
LCSS0820D	1.00	2254		x	х	х	x	х	х	x	Х	x	х	x	Х	Х	Х		X	X	X	Х	Х	Х	x	X	_
IDOLBGREPLT08RICE	1.00	2259		x	Х	х	Х	Х	Х	x	Х	х	х	x	Х	Х	Х		Х	Х	X	X	Х	Х	х	Х	
IDOLTAPLT10RICE	1.00	2304		x	х	х	х	x	х	x	Х	x	х	x	Х	х	Х		Х	X	X	X	X	X	x	x	
IDOLTAPLT10RICEL	5.00	2308		х	Х	х	Х	х	Х	x	х	x	х	х	Х	х	Х		Х	X	X	X	X	Х	x	X	
IDOLTAPLT10RICEA	1.00	2313		x	Х	x	Х	х	Х		Х	х	х	х	Х		Х		X		X	Х		X	х	Х	
IDOLTAPLT10RICED	1.00	2318		x	Х	x	X	х	Х	x	Х	х	x	х	Х	х	X		Х	X	X	X	Х	X	х	x	_
IDOLTAPLT10RICES	1.00	2322		x	Х	х	x	х	Х		х	х	х	х	х		X		Х		X	X		X	x	X	
IDOLTAPLT10100RICE	1.00	2327		x	x	х	X	x	Х	Х	Х	x	х	х	X	х	X		X	Х	X	х	Х	X	x	Х	_
IDOLWPPLT09RICE	1.00	2332		х	х	х	Х	x	Х	X	Х	x	x	х	х	х	х		X	х	X	Х	Х	X	х	Х	
CCA	1.00	2336		x	x	x	X	х	Х	х	х	х	х	х	х	х	X		X	Х	Х	x	Х	Х	х	x	
CCB	1.00	2341		х	х	х	X	х	Х	x	Х	х	х	х	Х	x	х		X	х	X	Х	Х	Х	х	x	
IDOLTAPLT11RICE	1.00	2346		х	Х	х	X	х	Х	x	Х	x	x	х	X	х	Х		Х	х	Х	Х	X	Х	x	x	
EBLK	1.00	2351	1	х	х	х	Х	х	Х	x	Х	x	x	х	X	x	X		X	x	Х	Х	Х	Х	$ \mathbf{x} $	x	
ZZZZZZ	1.00	2355																								Ш	_
ZZZZZZ	1.00	0000			ĺ																	<u> </u>				Ш	
ZZZZZZ	5.00	0005																								Ш	
ZZZZZZ	1.00	0009							L																	Ш	
ZZZZZZ	1.00	0014								Ĺ																Ш	
ZZZZZZ	1.00	0019																								Ш	
ZZZZZZ	10.00	0023	1																							\coprod	_
ZZZZZZ	50.00	0028																								\coprod	
CCV	1.00	0033		Х	Х	Х	х	Х	x	X	Х	x	x	х	x	x	х		Х	X	X	Х	X	X	х	x	
ССВ	1.00	0038	1	x	X	Х	x											Γ	х	X	X	Х	x	X	\mathbf{x}	X	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Instrument ID Number: TJA ICAP 4 Method: P

Start Date: 09/12/03 End Date: 09/13/03

EPA													I	lna	1y	te	s										
Sample No.	D/F	Time	% R	A L	S B	A S	B A	B E	C D	C A		1	1	i I	P B	ı		H G	N I	K	S E	A G	N A		V		C N
ZZZZZZ	10.00	0042																									
ZZZZZZ	10.00	0047					l																				
ZZZZZZ	10.00	0052					Ī																				
ZZZZZZ	10.00	0056																									
ZZZZZZ	10.00	0101					ĺ					Ī	Ī														
ICSA	1.00	0106		х	х	x	X	Х	Х	Х	Х	х	х	х	х	x	x		X	Х	X	х	x	X	х	x	
ICSAB	1.00	0110		х	Х	х	Х	Х	Х	Х	Х	х	x	х	х	x	х		х	Х	Х	x	x	X	х	X	
CRI	1.00	0115		Х	Х	x	X	Х	Х	x	Х	•		х	х	x	Х		х	х	X	х	х	х	х	х	
CCV	1.00	0120		Х	Х	х	Х	Х	Х	•	Х	!		х	х	х	х	Γ	х	x	Х	х	x	Х	х	х	
ССВ	1.00	0125		х	Х	x	X	х	X	_				х	х	x	х		х	х	x	х	х	х	х	х	

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON Contract: 23046

Lab Code: STLVT Case No.: 23046 SAS No.: SDG No.: IDV001

Instrument ID Number: Leeman Hydra AA Method: CV

Start Date: 08/14/03 End Date: 08/14/03

EPA													_ A	ına	lу	te	s										
Sample	D/F	Time	% R	A	S	Α	В	В	С	С		С						Н		K		A					0
No.				L	В	s	A	E	D	A	R	0	ט	E	В	G	N	G	I		E	G	A	L		И	Ŋ
s0	1.00	1654				<u> </u>												Х							\square		
S0.2	1.00	1656		İ														Х							Ш		
S0.5	1.00	1658		İ														Х									
S1	1.00	1700																Х									L
S5	1.00	1701																Х									
S10	1.00	1703		1														Х									
ICV	1.00	1705		İ		Г			Ī	Ī							П	Х					П		П		Γ
ICB	1.00	1707						Ì		i								х			Ī				П		Γ
CRA	1.00	1709		<u> </u>				i		İ]			İ			Ħ	х			Ī				П		Γ
CCV	1.00								i –								П	х			Ī				П		Γ
CCB	1.00				 	t									Ī	Ī	\Box	х				Γ	П		П	T	Γ
ZZZZZZ	2.00				1	i						П									i	Ī			\Box	\Box	Γ
ZZZZZZ	1.00	1716			1		1					İ					Ħ				Ì				П		Γ
ZZZZZZ	5.00														İ		1				Γ	Ì				П	Γ
ZZZZZZ	1.00									 					İ		1 1								П	П	Γ
PBS0813B	1.00			 	 	T		1 	<u> </u>		<u> </u>	1		 		Г		х							П	П	Γ
LCSS0813B	1.00		<u> </u>			 	<u>!</u> 	<u> </u>		 		\vdash	<u> </u>		<u> </u>		\Box	Х			İ				П		Γ
ZZZZZZ	1.00		<u> </u>	<u> </u>	-		<u> </u>		<u> </u>	\vdash	 	i	<u> </u>			一	\sqcap					Г			П		İΤ
ZZZZZZ	1.00			╁╌	<u> </u>			-		i	<u> </u>				T						Π			Г		П	Γ
ZZZZZZ	1.00		l		 	 	<u> </u>	Ι	I		<u> </u>	i	<u> </u>	T			\Box				İ	İ		i	П	П	Γ
CCA	1.00			\vdash	 	 	<u></u> -			1		╁		l —				х			T				П	П	Γ
ССВ	1.00		<u> </u>	T	一	I^-	1	 		 	1	T		┢	<u> </u>			Х			Ì					П	Γ
ZZZZZZ	1.00		İ	 	<u> </u>	┢	<u> </u>		\vdash	†			\vdash	 	1					Ì	Ĺ	一			П		Γ
ZZZZZZ	1.00		<u> </u>		 	1	i	一		i		╁		ı		T	Ħ				İ	İ	厂	İ	П	П	T
ZZZZZZ	1.00				\vdash		╁			1	i	1	1	╁	T				Г			厂	T	 	П		T
ZZZZZZ	1.00		<u> </u>	t^-	\vdash			 		1	1					İ	П					十	T		П		T
ZZZZZZ	1.00			╁┈	一	\vdash	t		\vdash	1				T	 		П				T	T	_	İ	П		T
ZZZZZZ		1743	<u> </u>	╁┈		╁	İ	_		╁	 	-	İ			Π	П		<u> </u>		İ	 			П		Γ
IDOLBGREPLT08RICE	<u> </u>	1745	1	t	-	t^-	 	 	<u> </u>	\vdash	 	\vdash	<u> </u>		\vdash	┪		Х				l	一	ĺ	П		T
IDOLTAPLT10RICE		1746	<u> </u>	T	1	i	 	<u> </u>	 	+	\vdash	\vdash		 	i —	İ		Х			i	一	<u> </u>		П	Γ	T
IDOLTAPLT10RICED		1749		t^-		\vdash	<u> </u>	<u> </u>		1	 	 	\vdash	 	 	T	$\dagger \lnot \dagger$	Х			T	一	T				T
CCA	<u>!</u>	1751	<u> </u>	T	\dagger		\vdash		\vdash	1	 		\vdash	T	T	1		Х		T	T	T	\vdash	 	\sqcap	Γ	T
ССВ	<u> </u>	1753	 	十	1	T	\vdash	_	1			<u> </u>		†-	\vdash	T	П	х			T	T		Π	\Box	Г	T
IDOLTAPLT10RICES	!	1755		\vdash	\vdash	╁╌	_	 	1	-	 	╁	i	╁	T	t^-		Х	_	<u> </u>	T	t	Г	i	П	Г	T
IDOLTAPLT10100RICE		1757		t	1	\vdash	 		\vdash	+	<u> </u>	\vdash	†	\vdash	\vdash	╁		х	ļ	I^-	Τ		T	I^-	H	一	t
IDOLWPPLTO9RICE	<u> </u>	1759	 	+-	1_	-	1	\vdash	╁	 	<u> </u>	+	十	\vdash	\vdash			X		ÌТ	T	T	\vdash	T	H	一	t
IDOLTAPLT11RICE	·	1801	1	\perp	+-	+-	 	-	-	\vdash	 	\vdash	 	十	\vdash	\dagger		х	_	Г	T	T		i i	П	\vdash	t
EBLK		1802		┼	1	+	\vdash	+-	\vdash	+-	<u> </u>	1	╁	十	+	十		х	<u> </u>	\vdash	+	t	\vdash	t	T	\vdash	t

14

ANALYSIS RUN LOG

Lab Name: STL BURLINGTON

Contract: 23046

Lab Code: STLVT

Case No.: 23046

SAS No.: SDG No.: IDV001

Instrument ID Number: Leeman Hydra AA

Method: CV

Start Date: 08/14/03 End Date: 08/14/03

EPA													2	\na	ıly	te	s								
Sample No.	D/F	Time	% I	R	A S	3 P	`		Ì	C D	C A	0		F E	P B			H G	N I	1	S		 T L	 Z N	
ZZZZZZ	1.00	1804		寸	i		Ť	T														·			
ZZZZZZ	1.00	1806					Ī												L	L	<u> </u>				L
ZZZZZZ	1.00	1808				Т															L			L	L
ZZZZZZ	1.00	1810					T															L			L
CCV	1.00	1811																х		L					L
ССВ	1.00	1813				\top	Ī	Ť									Γ	х							

BC Research Inc., BC Research and Innovation Complex, 3650 Westbrook Mall, Vancouver, BC, Canada V6S 2L2
Telephone: (604) 224-4331 • Facsimile: (604) 224-0540 • Email: info@bcresearch.com • Website: bcresearch.com

Table 1: Modified ABA Results for STL Burlington Samples Batch 4 - Received July 31, 2003

Sample	Paste	Total	Sulphate	Sulphide	Maximum Potential	Neutralization	Net Neutralization	Fizz
	рН	Sulphur	Sulphur	Sulphur*	Acidity**	Potential	Potential	Rating
		(Wt.%)	(Wt.%)	(Wt.%)	(Kg CaCO3/Tonne)	(Kg CaCO3/Tonne)	(Kg CaCO3/Tonne)	
BLAC-PD-SSS-10-0.4	4.5	1.13	0.18	0.95	29.7	-14.5	-44.2	none
BLAC-WP-SUS-12-1.0	4.5	0.04	0.04	0.00	0.0	-2.3	-2.3	none
BLAC-WP-SUS-13-1.5	4.9	0.03	0.01	0.02	0.6	-0.8	-1.4	none
BLUE-AD-SSS-19-0.5	3.8	0.7	0.49	0.21	6.6	-15.8	-22.4	none
BLUE-TA-SSS-27-0.5	6.2	< .02	<0.01	< .02	<0.6	-2.5	-2.5	none
BLUE-TA-SUS-32-1.5	6.4	< .02	<0.01	< .02	<0.6	4.3	4.3	none
BLUE-TA-SUS-33-2.0	6.4	< .02	<0.01	< .02	<0.6	3.3	3.3	none
BLUE-WP-SUS-20-2.5	4.0	0.41	0.33	0.08	2.5	-2.3	-4.8	none
BLUE-WP-SUS-21-1.5	3.7	0.26	0.18	0.08	2.5	-3.0	-5.5	none
BLUE-WP-SUS-22-1.5	3.4	0.26	0.21	0.05	1.6	-3.3	-4.9	none
BLUE-WP-SUS-29-1.0	4.6	0.04	0.02	0.02	0.6	-2.3	-2.9	none
CHAM-ML-SSS-25-100	3.4	0.98	0.44	0.54	16.9	-3.3	-20.2	none
CLEA-BG-SSS-25-0.5	5.8	< .02	<0.01	< .02	<0.6	-2.8	-2.8	none
CLEA-BG-SSS-25-0.5 Rep.	6.2	< .02	<0.01	< .02	<0.6	-3.0	-3.0	none
CLEA-BG-SSS-26-0.5	6.1	< .02	<0.01	< .02	<0.6	-1.3	-1.3	none
IDOL-BK-SSS-08-0.5	6.1	0.06	0.05	0.01	0.3	0.8	0.5	none
IDOL-BK-SSS-08-0.5 Rep.	6.1	0.08	0.06	0.02	0.6	0.0	-0.6	none
IDOL-WP-SSS-03-0.5	4.4	1.7	1.24	0.46	14.4	-12.0	-26.4	none
IDOL-WP-SUS-03-3.5	3.4	2.11	1.83	0.28	8.7	2.3	-6.4	none
IDOL-WP-SUS-18-5.5	3.7	0.64	0.50	0.14	4.4	-7.0	-11.4	none
IDOL-WP-SUS-18-100	3.5	0.72	0.60	0.12	3.8	-2.5	-6.3	none

^{*}Based on difference between total sulphur and sulphate-sulphur

^{**}Based on sulphide-sulphur

BC Research Inc., BC Research and Innovation Complex, 3650 Wesbrook Mall, Vancouver, BC, Canada V6S 2L2
Telephone: (604) 224-4331 • Facsimile: (604) 224-0540 • Email: info@bcresearch.com • Website: bcresearch.com

Table 2a: QA/QC for NP Determination (Modified ABA Method)

Sample	Neutralisation	Neutralisation		
	Potential	Potential		
	(kgCaCO3/Tonne)	(kgCaCO3/Tonne)		
BLUE-WP-SUS-22-1.5	-3.3	-3.3		
CHAM-ML-SSS-25-100	-3.3	-3.5		
NBM-1 Reference (NP = 42)	39.5	-		

Table 2b: QA/QC for Sulphur Speciation

Sample	Sulphur (Wt.%)	Sulphur (Wt.%)
Duplicates - total sulphur		
BLUE-WP-SUS-22-1.5	0.26	0.25
IDOL-WP-SUS-18-100	0.72	0.73
Std. CSB (5.3%)	5.31	-
BCRI Std. (0.11%)	0.11	-
Dulpicates - sulphate sulphur		
BLUE-WP-SUS-29-1.0	0.02	0.03
IDOL-WP-SSS-03-0.5	1.24	1.23
BCRI 0.23% SO4-S Ref.	0.24	-

Appendix H

Waste Pile Volumes

SURVEY INFORMATION

A site survey was performed at the Idol City Mine site by Anderson Perry & Associates, Inc., of La Grande, Oregon. All Site Inspection sample locations were surveyed, and a topographic map of the site was prepared. Copies of the site survey drawings (Sheets 1, 2, and 3) are included herein.

WASTE PILE VOLUMES

Waste pile calculations were performed by Anderson Perry. The calculations were made using Land Development Desktop (LDD) software and the prismoidal cross-sectional method, and were verified by using the grid and surface composite methods. The totals obtained by all three methods agree within 1%.

Volumes were calculated for 15 separate waste piles at the site. The individual pile volumes are summarized below and the waste pile designations are shown on Anderson Perry Sheets 1 and 2 (following). The total estimated waste pile volume for the piles identified herein is approximately 2,000 cubic yards.

	Method					
Waste Pile Designation	Grid	Composite	Prismoidal			
1	92	92	93			
2	2	2	2			
3	27	27	27			
4	132	132	132			
5	447	448	448			
6	120	122	122			
7	26	27	27			
8	2	2	2			
9	19	19	19			
10	813	814	814			
11	41	40	41			
12	13	13	13			
13&14	114	114	114			
15	113	113	113			
TOTALS (in cubic yards)	1,961	1,965	1,967			

MINE RECLAMATION SURVEY IDOL CITY MINE

HARNEY COUNTY, OREGON for

EA ENGINEERING, SCIENCE,
AND TECHNOLOGY

SURVEY DATE

July, August 2003

REGISTERED PROFESSIONAL LAND SURVEYOR

OREGON
JAN. 21, 1992
HARMON E. MCLENDON

renews 12/31/04

Anderson Perry & Associates, Inc.

Civil Engineers and Land Surveyors

P.O. Box 1107, La Grande, Oregon P.O. Box 1687, Walla Walla, Washington 2101 Main St., Baker City, Oregon

engineering · surveying · materials testing

December 15, 2003 Job No. 834-31

EA Engineering, Science & Technology Attn: Cathy Bohlke 120011 Bellevue-Redmond Road, Suite 200 Bellevue, Washington 98005

Re: Idol City Mine Site - Final Survey Report

Dear Cathy:

This submittal completes the survey report for the above referenced project. Inside you will find final drawings, quantity calculations, a complete survey point listing, and a CD-ROM containing all project data in an ACAD2000-Land Development Desktop (LDD) format.

Survey control for this project was obtained by static GPS observations from the National Geodetic Control Station "BNO D," PID Number AA7995, located at the Burns Municipal Airport in Burns, Oregon. Dual frequency Topcon, Hiper, and Legacy receivers were employed to collect the data and it was processed using Trimble Geomatics Office software. Coordinates are reported in Oregon State Plane coordinates, South Zone, NAD83 (1998), and the vertical datum is NAVD88.

Topographic information was collected using a Lieca TC1100 total station with sufficient precision to develop a digital terrain model capable of producing a two-foot contour interval base map for quantity calculations.

Quantity calculations were performed using the prismoidal cross-sectional method and were independently verified using both the grid and surface composite methods within the LDD software. For the purposes of this project, it was assumed that the existing ground profile under the waste piles was a perfectly flat plane, recognizing that this assumption would produce errors in the final quantity calculations.

I hope you find this submittal to your satisfaction. If you have any questions concerning this material, please contact me directly. It has been a pleasure working with you and I look forward to other projects in the near future.

Very truly yours,

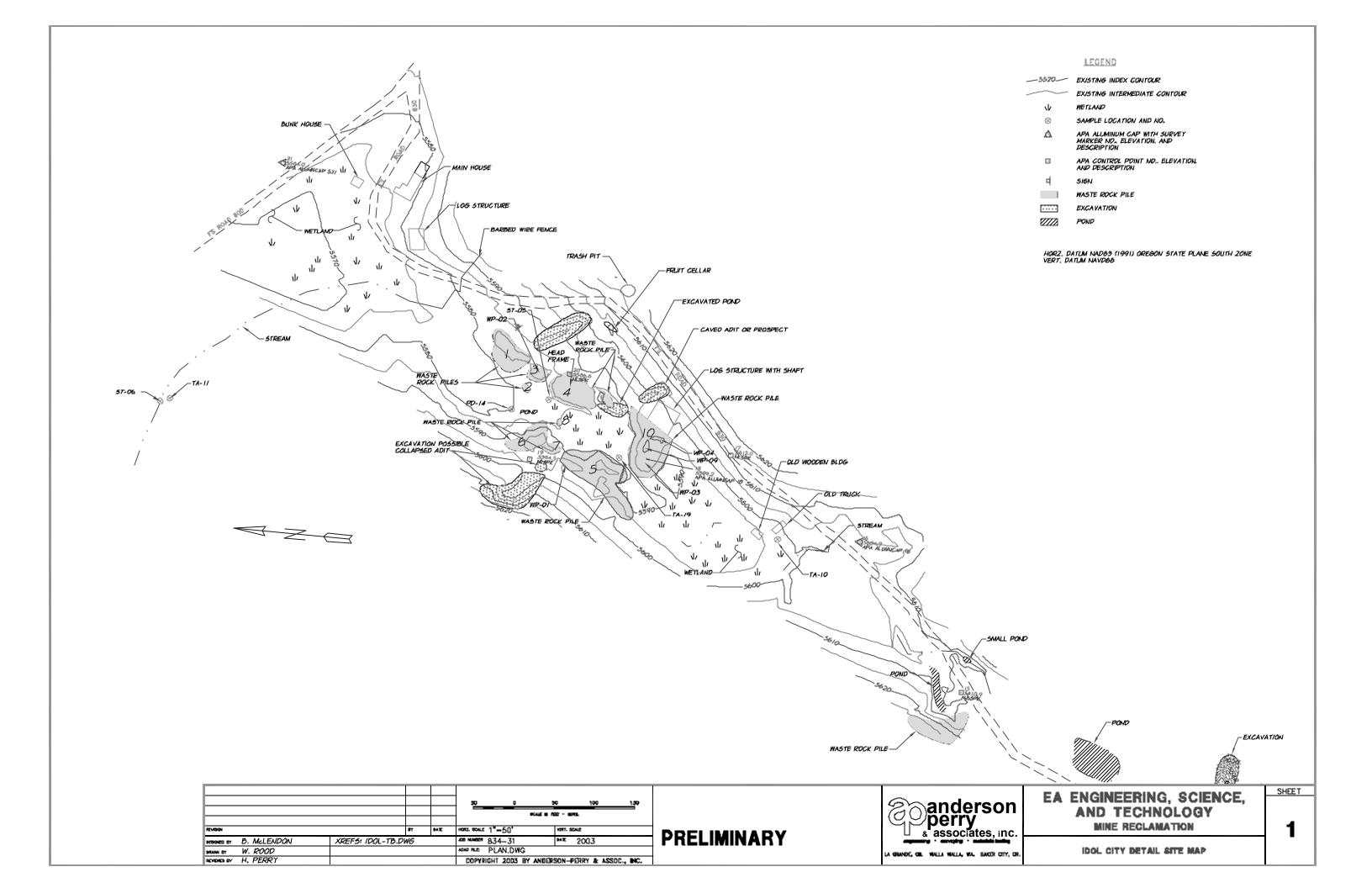
ANDERSON PERRY & ASSOCIATES, INC.

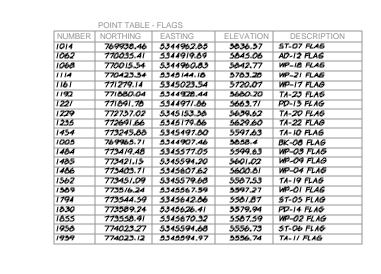
Bv

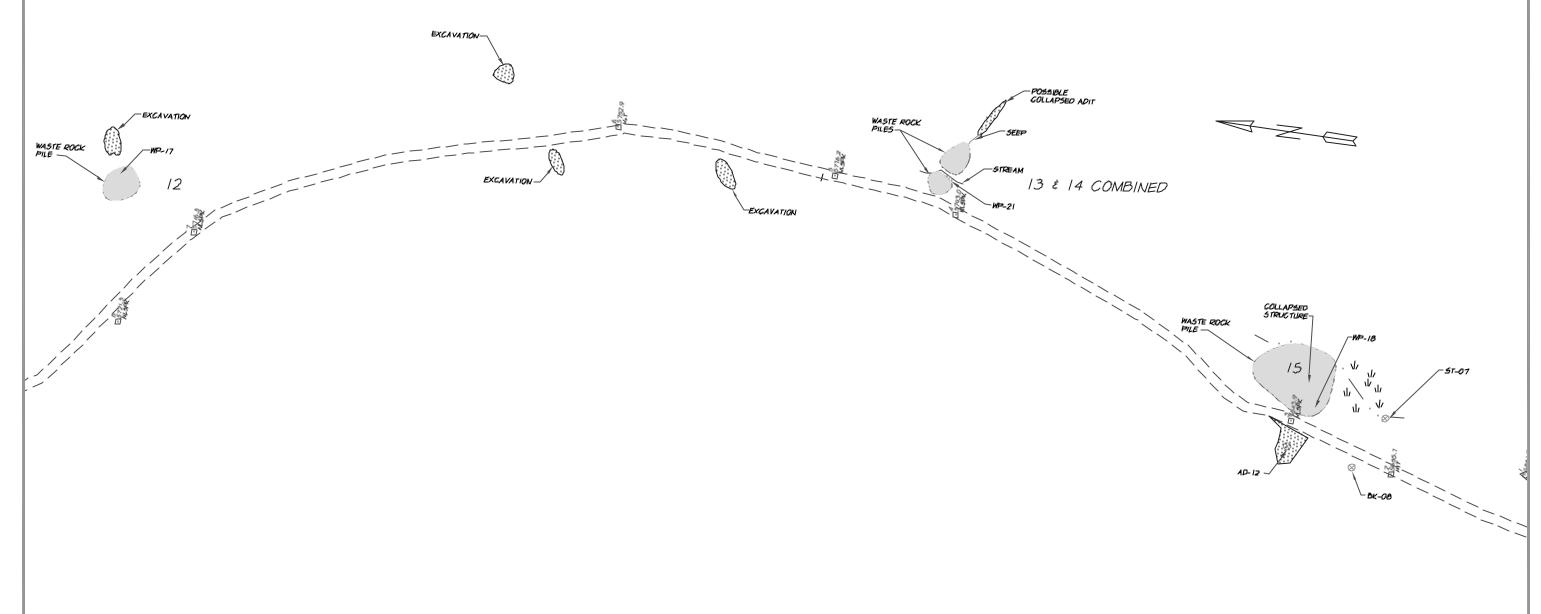
Beau McLendon, Oregon PLS 2537

BM/cd G:\Clients\EA\EA-Final Submittal.doc Drawing Name: plan
Project Name: IDOL
Project Path: Q:\EA\IDOL\
Username: wrood

Number	Northing _	Easting	Elevation	Raw Desc	Full Desc
1005	769965.7111	5344907.4614	5858.4	PLT-08	PLT-08
1014	769938.4615	5344962.8513	5836.6	ST-07 FLAG	ST-07 FLAG
1062	770035.4131	5344919.8877	5845.1	AD-12 FLAG	AD-12 FLAG
1068	770015.5398	5344960.8278	5842.8	WP-18 FLAG	WP-18 FLAG
1114	770423.5390	5345144.1764	5783.3	WP-21 FLAG	WP-21 FLAG
1161	771279.1377	5345023.5427	5720.1	WP-15 FLAG	WP-15 FLAG WP-17
1192	771880.0421	5344928.4378	5680.2	TA-23 FLAG	TA-23 FLAG
1221	771891.7829	5344971.8607	5663.7	PD-13 FLAG	PD-13 FLAG
1229	772737.0230	5345153.3774	5639.6	TA-20 FLAG	TA-20 FLAG
1235	772691.6639	5345179.8559	5629.6	TA-22 FLAG	TA-22 FLAG
1454	773245.8769	5345497.8015	5597.6	TA-10 FLAG	TA-10 FLAG
1455	773242.6801	5345499.6262	5598.4	TA-10 PLT-10FLAG	TA-10 PLT-10:
1484	773419.4845	5345577.0475	5599.6	WP-03 FLAG	WP-03 FLAG
1485	773421.1537	5345594.1987	5601.0	WP-09 FLAG	WP-09 FLAG
1486	773403.7130	5345607.6242	5600.8	WP-04 FLAG	WP-04 FLAG
1562	773451.0938	5345579.6825	5587.5	TA-09 FLAG	TA-09 FLAG TA-19
1589	773516.2440	5345567.5893	5597.3	WP-01 FLAG	WP-01 FLAG
1794	773544.5887	5345642.8633	5581.9	ST-05 FLAG	ST-05 FLAG
1830	773589.2448	5345626.4144	5579.9	PD-14 FLAG	PD-14 FLAG
1855	773558.9080	5345670.3218	5587.6	WP-02 FLAG	WP-02 FLAG
1958	774023.2732	5345594.6798	5556.7	STO-06 FLAG	ST ø -06 FLAG
1959	774023.1227	5345594.9707	5556.7	TA-11 FLAG	TA-11 FLAG


Project: IDOL Wed November 12 09:38:34 2003


rroject. ib	OB		Volume		Unadjus				
		Cut yards	У	Fill ards	У	Net ards ======	M	etho	
Site: WP1 Stratum:	wp1	mine WP1 92 93 93		(0 0 0		92 93	(C) (C)	Grid Composite Prismoidal
Site: WP2 Stratum	wp2	mine WP2 2 2 2 2		(0 0 0		2	(C)	Grid Composite Prismoidal
Site: WP3 Stratum:	wр3	mine WP3 27 27 27		(0 0 0		27	(C)	Grid Composite Prismoidal
Site: WP4 Stratum	wp4	mine WP4 132 133 133		1	0 0 0		132	(C)	Grid Composite Prismoidal
Site: WP5 Stratum	wp5	mine WP5 455 458 458		1			448	(C)	Grid Composite Prismoidal
Site: WP6 Stratum	wp6	mine WP6 121 123 123			1 1 1		122	(C)	Grid Composite Prismoidal
Site: WP7 Stratum	wp7	mine WP7 26 27 27			0 0 0		27	(C)	Grid Composite Prismoidal
Site: WP8 Stratum:	wp8	mine wp8 2 2 2 2			0 0 0		2	(C)	Grid Composite Prismoidal
Site: WP9									

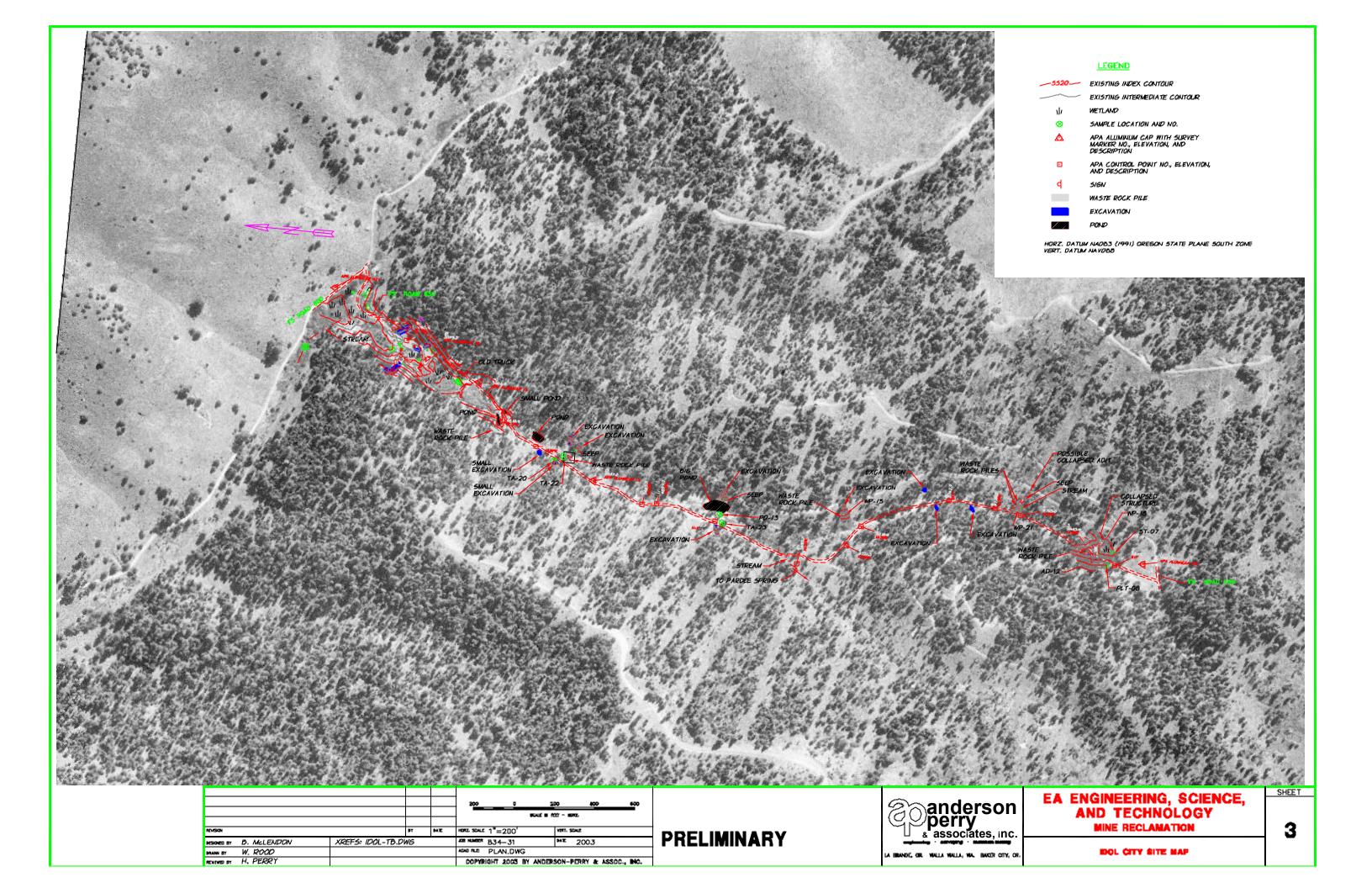

Page 1

WASTEPILE VOLUMES.TXT

Stratum: wp9	mine WP9		
	21	2	19 (C) Grid
	21	2 2	19 (C) Composite
	21	2	19 (C) Prismoidal
Site: WP10			
Stratum: wp10) mine WP10		
-	815	3	813 (C) Grid
	817	3 3 3	814 (C) Composite
	817	3	814 (C) Prismoidal
Site: WP11			
Stratum: wp11			
	41	0	41 (C) Composite
	40	0	40 (C) Grid
	41	0	41 (C) Prismoidal
Site: WP12			
Stratum: wp12			
	3	17	13 (F Grid
Stratum wp12		_	
	17	3 3 3	13 (C) Grid
	17	3	13 (C) Composite
	17	3	13 (C) Prismoidal
Site: WP15			
Stratum: wp15	WP15 wp15b		
beracum. wpro	187	74	113 (C) Grid
	187	74	113 (C) Composite
	187	74	113 (C) Prismoidal
	107	7 3	115 (C) IIISMOIGAI
Site: WP1314			
Stratum: wp13	314 wp131 wp13b		
-	114	0	114 (C) Grid
	114	0	114 (C) Composite
	114	0	114 (C) Prismoidal

				1					
					50	B	.50	100	150
						F	CALE IN FIET - H	VR2.	
REVISION			BY	DATE	HORZ SDALE 1 ===	-50'	VERT	5GALE	
DESIGNED BY	B. McLENDON	XREFS: IDOL-TB.DI	WG		JOH HUMBER 834	I- <i>3</i> 1	DATE	2003	
DRAWN BY	W. ROOD				AGAD FILE: PL/	AN.DWG			
REVIEWED BY	H. PERRY				COPYRIGHT	2003 RY	ANDFRSON-	PERRY & ASS	OC., INC.

PRELIMINARY



EA ENGINEERING, SCIENCE, AND TECHNOLOGY MINE RECLAMATION

DOL CITY DETAIL SITE MAP

SHEET

4

